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ABSTRACT

Existing data analysis and visualization algorithms are used in a wide
range of simulations that strive to support an increasing number of
runtime systems. The BabelFlow framework has been designed to
address this situation by providing users with a simple interface to
implement analysis algorithms as dataflow graphs portable across
different runtimes. The limitation in BabelFlow, however, is that
the graphs are not easily reusable. Plugging them into existing in
situ workflows and constructing more complex graphs is difficult.
In this paper, we introduce LegoFlow, an extension to BabelFlow
that addresses these challenges. Specifically, we integrate LegoFlow
into Ascent, a flyweight framework for large scale in situ analytics,
and provide a graph composability mechanism. This mechanism is
an intuitive approach to link an arbitrary number of graphs together
to create more complex patterns, as well as avoid costly reimple-
mentations for minor modifications. Without sacrificing portability,
LegoFlow introduces complete flexibility that maximizes the produc-
tivity of in situ analytics workflows. Furthermore, we demonstrate
a complete LULESH simulation with LegoFlow-based in situ vi-
sualization running on top of Charm++. It is a novel approach for
in situ analytics, whereby the asynchronous tasking runtime allows
routines for computation and analysis to overlap. Finally, we evalu-
ate a number of LegoFlow-based filters and extracts in Ascent, as
well as the scaling behavior of a LegoFlow graph for Radix-k based
image compositing.

Index Terms: Software and its engineering—Data flow
architectures—; Human-centered computing—Visualization—
Scientific visualization

1 INTRODUCTION

Most high-performance computing systems already made the transi-
tion into heterogeneous architectures. This trend is set to increase
even more as we approach the limits of the Moore’s law. Existing
and upcoming diverse hardware architectures lead to a significant
challenge of code and performance portability. As a result, develop-
ers of simulation codes will typically choose a platform and a family
of accelerators to focus on and then spend their efforts to write and
tune the code for this chosen set of architectures.

Data and visualization analytics is an integral part of any scientific
simulation workflow. Traditionally, the process of analyzing and
visualizing the data, with the help of tools such as Paraview [3] and
VisIt [7], occurs post-mortem, that is after the simulation has finished
running and writing all the data to storage. In such case, analysis
routines often run on dedicated systems with fairly standard software
stacks. Even if simulation codes run on different architectures and
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on different runtimes, the post-mortem setting allows analysis code
to be optimized for just one architecture.

Post-mortem analysis, however, has a major drawback that stems
from the imbalance between compute capacity and I/O bandwidth.
An imbalance that is exacerbated by the emergence of extreme
scale HPC systems. Performing either partial or full analysis of the
simulation data in situ, that is during the computation phase, has the
potential to mitigate this problem. In recent years, in situ analysis
has been gaining increased focus [10, 11, 14, 36] and was shown to
be effective in providing insight into simulations whilst drastically
reducing the amount of data that needs to be stored.

With in situ processing, analysis routines become an integral part
of the simulation code stack. Unlike simulation code, however, anal-
ysis routines are general enough to be applicable to a wide range of
domains and problems. If different simulation codes run on different
architectures or runtimes, we are faced with the problem of con-
stantly tailoring analysis code to each specific hardware. This incurs
significant costs over time as we need to maintain an increasing
number of different implementations of the same algorithms. Intro-
ducing new features or fixing bugs becomes an ordeal since it has
to be replicated for each target runtime and hardware. As a result,
most existing tools go down the simulation code route and focus
on a single runtime (e.g., MPI). Even libraries designed to simplify
the development of new analysis also target eventually a specific
runtime. One example is the DIY and DIY2 libraries [27, 30], both
of which are based on MPI.

BabelFlow [31] was designed to address these challenges by
providing developers with a simple dataflow-based interface to im-
plement parallel algorithms. Essentially, BabelFlow describes task
graphs that explicitly identify parallel execution sections of the algo-
rithm and the relations between them. The biggest strength is that it
isolates the description of the algorithm from the implementation.
In this way, BabelFlow abstracts all aspects of communication from
the users, thereby enabling them to focus fully on algorithm de-
sign. Most importantly, however, it transparently maps the dataflow
graph onto various runtimes to provide a native execution of the
corresponding algorithm.

One of the main drawbacks of BabelFlow is that it lacks integra-
tion with existing in situ analytics platforms. Another one is that
there is no ability to easily combine existing dataflows together. The
second aspect is strongly related to the first since in situ analytics
requires flexible analysis routines that can handle changing data
between iterations. In BabelFlow, users are required to reimplement
common patterns for even minor additions, such as attaching an
additional file I/O step to the end of an algorithm or adding a pre-
processing step before an existing dataflow. Although it might be
possible to mitigate some of these challenges through the use of
more complex software constructs such as templates or hierarchical
design patterns, BabelFlow provides no such tools and their use
would also run counter to the desired simplicity for non-experts.

In this work, we introduce LegoFlow, an extension to BabelFlow
that integrates with Ascent [22], a flyweight in situ analysis frame-
work, and provides a simple and intuitive interface to compose
an arbitrary number of dataflow graphs to create more complex
patterns. LegoFlow enables developers to implement a library of



communication patterns ranging from simple reductions to complex
algorithms, such as computing a merge tree or compositing an image,
and then chain these building blocks into new dataflows (and new
algorithms) for more specialized situations. Just like BabelFlow,
LegoFlow hides all communication from the user whilst maintaining
a simple idempotent task model and provides a native implementa-
tion of the dataflow in any of the backend runtimes including MPI,
Charm++ [19], and Legion [13].

Composability of dataflow graphs is essential in in situ analytics.
This allows LegoFlow to be used as a complete communication layer
underneath Ascent so that most of the existing filters and extracts can
run on non-MPI runtimes with minimal adaptation. It also allows
users to adapt dataflows to create multiple variants of a a dataflow
for different conditions during the simulation.

Specifically, our contributions are as follows:

• LegoFlow infrastructure that includes mechanisms to compose
dataflow graphs and a library of common patterns (e.g., Radix-
k, reduction, gather).

• Integration of LegoFlow with Ascent, including providing a
number of filters and extracts based on LegoFlow-based.

• Demonstration of the LULESH code execution on top of
Charm++ with full LegoFlow-based Ascent pipeline that com-
putes and renders iso-surfaces.

The rest of the paper is organized as follows. We start by re-
viewing related work in Section 2 and then continue with a brief
background of BabelFlow in Section 3. Section 4 describes the
design of LegoFlow and goes into greater detail on its methodology.
Next, Section 5 explains the LegoFlow-based filters and extracts
in Ascent, followed by Section 6 that evaluates various use cases.
Finally, we present conclusions and future work in Section 7.

2 RELATED WORK

Dataflow graphs
The concept of dataflow graphs has been extensively researched [18].
Perhaps the earliest use of the dataflow abstraction in the context of
scientific data analysis and visualization is the SCIRun system [28].
This system uses dataflow graphs to break analysis and visualiza-
tion algorithms into a network of separate modules such as mesh
reading, Delaunay triangulation, iso surface computation, and so
on. Furthermore, users are also provided with a tasking library to
offload the computation onto multiple threads on a single node. A
later study [33] introduces ready-to-use templates of dataflow graphs
that represent common parallel execution patterns. The author ac-
knowledge the gap between the power of dataflow abstractions and
ease of programming and aim to mitigate it.

Graph composability
One prominent example for explicit API for graph composability is
Intel Threading Building Blocks (TBB) [35]. This library provides
users with an interface to create task graphs that are executed on a
multicore processor. Similar to other tasking abstractions, the user
identifies independent units of computation and the dependencies
between them. One of the nodes in a TBB graph could be another
TBB graph. This allows users to express nested parallelism in their
algorithms and reuse existing graph patterns. Another approach,
called Cpp-Taskflow, is similar to TBB and provides users with a
library to express task based parallelism on multicore architectures
in the form of task graphs [17]. The library leverages modern C++ to
provides users with an API for more efficient parallel decomposition.
A later development [24] extended Cpp-Taskflow to also allow quick
reuse and composition of existing task graphs. Unlike Cpp-Taskflow,
however, LegoFlow allows for more complex interconnects between
tasks using the graph connector interface explained in the next sec-
tions.

In situ analytics.
A number of studies focus on different aspects of in situ (and in
transit) analytics. GoldRush [36] targets MPI/OpenMP-based sim-
ulations and utilizes periods when OpenMP threads are idle to run
in situ algorithms. Damaris/Viz [15] is a framework for in situ vi-
sualization that uses the Damaris I/O middleware. By running on
dedicated cores it allows simulation to overlap with in situ process-
ing. Bauer et al. [11] survey methods, infrastructures, and a range
of applications that use in-situ techniques for analysis and visual-
ization. Ayachit et al. [10] examined the scalability, overhead, and
performance aspects related to in situ analysis of mini applications
using SENSEI, a framework that is able to channel simulation data
into a myriad of analysis or visualization tools such as ParaView
and VisIt. These efforts are mainly based on MPI and, in some
cases, on OpenMP. However, more recent studies examine in situ
analytics in task-based execution environments. Tasking abstraction
is more general than threading as it decouples a logical execution
package (i.e., a task) from specific implementation concepts such as
process or thread. A tasking system, therefore, can be implemented
using any combination of processes and threads. Heirich et al. [16]
demonstrate that both the simulation and in situ visualization can
run on top of Legion. TINS [14] is a framework for in situ analytics
that runs on top of TBB and can use dedicated cores for execution,
thereby isolating analysis from the simulation. LegoFlow takes a
step further by offering a framework of composable parallel patterns
for versatile in situ analytics that is not limited to just one non-MPI
runtime or just one visualization workflow.

3 DATAFLOW GRAPHS IN BABELFLOW

In this section, we present an overview of BabelFlow [31]. This will
provide us with the necessary context to discuss LegoFlow later on.

3.1 Overview
In BabelFlow, the algorithm is described as a task graph in which
individual tasks are nodes with inputs and outputs. The inputs are an
array of task identifiers that a task receives data buffers from. The
outputs, on the other hand, allow for multiple data per destination.
Therefore, the outputs are an array of an array of task identifiers.
In other words, there is an array of task identifiers per each output
buffer. The flow of the data is captured by the edges between the
tasks. Parallel execution of the task graph is carried out by a runtime
controller that corresponds to the chosen runtime system. Both
task graphs and controllers use a C++-based API. Typically, the
user will implement a new task graph by deriving from the abstract
TaskGraph class that provides an interface for describing tasks and
other properties of the graph. The existing controllers for MPI,
Charm++, and Legion are aware just of this abstract class so they
automatically will support any new user defined task graphs.

The interface is designed so that task graphs are specified in a
procedural way. This means that individual tasks are only produced
by demand and are not preconstructed. Furthermore, users provide
implementations for routines that serialize / deserialize task graphs
and the objects exchanged between the tasks. Having procedural
graphs means serialization is cheap and allows moving the graph
efficiently between local and remote processing nodes. BabelFlow,
therefore, supports both shared memory and distributed memory
runtimes.

3.2 Runtime Controllers
Runtime controllers orchestrate the execution of the dataflow graph
on a specific system runtime. Controllers differ in the way they
keep track of dependencies, schedule tasks, and distribute tasks be-
tween the available computing resources. An individual computing
resource is called a shard; for example, in MPI case, a shard is an
MPI process. Some controllers use an optional class that defines
the mapping between tasks and shards. It is called a task map. This



mapping is completely orthogonal to the graph definition so that the
graph is completely independent from the controller.

The MPI controller statically allocates tasks to ranks according
to the provided task map. This enables flexibility and debugging
options, e.g., a special task map can map all tasks to one process.
Once the local portion of the dataflow graph is instantiated in a
process the execution proceeds independently. To communicate data
between tasks, asynchronous point-to-point messages are used. The
controller first posts receive calls and waits for incoming messages.
Once a message for a task arrives it checks whether all the inputs for
that task are present and if they are the task is ready for execution. In
such case, the controller executes that task in a separate thread. For
this purpose, C++ threading API with a thread pool is used. Once
the task finishes executing the resulting buffer or buffers can be sent
to neighboring (target) tasks connected with outgoing edges from
the current (source) task. In case the target task is assigned to the
same rank, the controller just assigns pointers instead of performing
a redundant copy of the buffer.

The Charm++ parallel programming model is based on C++ and
organizes the execution into migratable objects called chares. These
objects then communicate between each other asynchronously [19].
In other words, chares are units of parallel computation that can be
preempted and migrated between worker threads distributed across
different nodes. The runtime controller assigns the tasks in the graph
to chares; by default, each task is assigned to a single, unique chare.
Charm++ launches all the chares simultaneously and manages the
load on each thread by migrating chares between the threads. In this
case, no task map is needed since the mapping is trivial—one task
per chare. The serialized task graph is passed as a parameter to a
chare constructor, which then deserializes it and requests the task
that corresponds to the current chare. Once a task finishes executing,
its output is sent to an outgoing neighbor by means of an entry
function call in the corresponding chare. This is the mechanism in
Charm++ to send messages between chares and it is implemented as
remote procedure calls (RPC).

The Legion controller uses the Legion runtime [13]. It is a data-
centric programming model that defines data dependencies in a
program using so called logical regions. Those regions represent
the input and output data of each Legion task, and for each logical
region a corresponding physical region will be instantiated and used
at runtime to de-/serialization the data. The controller decomposes
the input task graph into rounds of independent tasks (i.e., tasks that
do not have data dependencies in the same round) and launches them
using an index task launcher. This is currently the recommended
method for Legion applications to spawn a large number of tasks
efficiently. Rounds are executed asynchronously and the runtime
is fully responsible for the distribution and execution of the tasks
spawned at each round. It also handles the data movement according
to the defined data dependencies.

4 COMPOSABLE DATAFLOW GRAPHS

We start this section by presenting the design of LegoFlow and
then continue with a discussion about a number of challenges we
faced. The goal was to fit LegoFlow into the existing structure of
BabelFlow without sacrificing its strengths.

4.1 LegoFlow Design
Figure 1 is a schematic diagram of LegoFlow. It is a middle layer
between runtime systems and the application / Ascent filters. A
LegoFlow graph specifies the flow of data between nodes, where
each node (i.e., task) processes the data independently. The imple-
mentation for each task is provided by the user of LegoFlow, be
it the application or an Ascent filter. We call these implementa-
tions callbacks as they are essentially functions that are called by
the controller once the task is ready to execute. The graph is an
explicit representation of a coarse-grained parallelism, such that
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Figure 1: Overview of LegoFlow.

the implementation of each task can use fine-grained parallelism by
targeting various CPU architectures or GPU accelerators. In Sec-
tion 5, we demonstrate an example in which a LegoFlow task uses a
portable GPU-accelerated library. It is important to note, however,
that the task implementation must preserve portability and not use
runtime-specific code.

Some dataflows, such as broadcast and k-way reduction, are al-
ready provided by BabelFlow. But as described earlier, there is no
easy and flexible way to combine existing graphs and communica-
tion patterns into a new graph. Going through this process would
involve two steps with compounding complexity. First, code for any
common components would have to be copied between combined
dataflows with all the downsides regarding code maintenance, de-
bugging, and performance optimization this entails. Second, the
key complexity of combining dataflows is managing the task index
spaces used to route messages. Many individual dataflows in Ba-
belFlow use pre- and post-fix index operations to simplify creating
phases or rounds of communication. Harmonizing the index man-
agement across dataflows, therefore, is non-trivial, labor intensive,
and error prone.

LegoFlow extends BabelFlow by introducing three new concepts.
First, task identifiers that encapsulate individual task ID’s and graph
ID’s and that behave like a single hashable number. Second, a
graph connector abstraction that supports arbitrary links between
composed graphs and a default implementation for a connector that
covers most common use cases. Finally, LegoFlow introduces a
composable graph abstraction that encapsulates connected graphs
and is itself a task graph. Below we discuss these concepts in more
detail.

4.2 Task Identifiers
The tasks in a BabelFlow graph are identified by a local ID and a
global ID. The former is used to identify tasks within the same local
shard (e.g., MPI rank) and the latter identifies tasks globally, across
all the shards. Both ID’s are integers. In LegoFlow, composable
graphs need to take into account also the subgraph each task belongs
to. For this purpose, we modified the original TaskId class to
represent a pair of ID’s: the subgraph index and the local ID of
the task in that graph. By implementing overloaded arithmetic and
conditional operators the new task ID can be plugged into existing
code as is without substantial code modifications. Furthermore,
we implemented a hash function for the TaskId class so that we
can keep using hash maps in both runtime controllers and graph
connectors.

4.3 Graph Connectors
We defined the abstract TaskGraphConnector class that specifies
how tasks are connected in a composable graph. Essentially, the



class ComposableTaskGraph : public TaskGraph
{
public:
// Uses a default graph connector
ComposableTaskGraph(std::vector<TaskGraph*>&);

// Uses the given graph connector
ComposableTaskGraph(
std::vector<TaskGraph*>&,
const TaskGraphConnectorPtr&);

// ...
private:
std::vector<TaskGraph*> m_graphs;
TaskGraphConnectorPtr m_connector;

};

Listing 1: Composable graph.

class declares three methods. One returns the outgoing connections
from a source task to target tasks and the second one—incoming
connections into a target task. These two methods reflect the dis-
tinction between incoming and outgoing connections in a task. The
third method connects the source and target tasks together.

As a default implementation for a task graph connector, we
defined the MultiGraphConnector class. This connector links
graphs according to given pairs of subgraph indices. Specifically,
given an array [g0, g1, ..., gN ] of graphs and an array of possible
pairs of graph indices [(i, j)...] (i < j), it connects the graphs accord-
ing to these indices: gi ! g j. If users provide no index pairs, the
default behavior is to link consecutive graphs together, i.e., gi ! gi+1
for i = 0, 1, ..., N � 1. This default connector is used for all the
use cases in the paper and together with the general functionality
in MultiGraphConnector would be sufficient for most cases we
envision. Should users require more specialized behavior they have
the flexibility of developing a new connector for their needs.

The MultiGraphConnector class links a pair of graphs together
by linking a root (i.e., sink) task in the origin graph to a leaf task in
the target graph. A root task is a task without output edges and a
leaf task is task without inputs edges. The implementation requests
an enumeration of root and leaf ID’s from the two graphs and uses a
round-robin approach to map a root task to a corresponding leaf task
(modulo the total number of leaves). Specifically, the leaf task ID
is appended to the array of outgoing task ID’s in the root, and vice
versa, the ID of the root is appended to the array of incoming task
ID’s in the leaf.

4.4 Composable Graph
Listing 1 shows a code excerpt that defines the
ComposableTaskGraph class that represents a composable
task graph. It encapsulates an array of subgraphs and contains
a pointer to an instance of a graph connector that specifies how
these subgraphs are linked together. If no connector is provided in
the constructor a default MultiGraphConnector is created. This
small feature makes it very easy for users to use LegoFlow. They
need only to create an array of graphs to be composed and pass that
array to the constructor. ComposableTaskGraph inherits from the
TaskGraph class and so behaves exactly like a task graph from the
perspective of a runtime controller.

We also implemented the ComposableTaskMap class that speci-
fies a default task map that can be used for composable graphs. It
works by aggregating the task maps that correspond to each sub-
graph. In other words, whenever it needs to map a task to a shard it
first extracts the subgraph ID from the task ID and then uses that ID
to access the subgraph’s task map and resolve the mapping.

5 INTEGRATION WITH ASCENT

A central contribution of this work is introducing portability and
composability of dataflows into in situ analytics. For this purpose,
we integrated LegoFlow with Ascent [1] and exposed a number of
dataflows as filters and extracts. In the Ascent pipeline the data
flows through various filters until it reaches potential extracts and
scene operations. A filter transforms the data or augments it in some
way, whereas an extract is designed to extract certain parts of the
data without passing it further down the pipeline. The extracted data
is typically rendered or written to the disk in some form (e.g., an
HDF5 dataset). A scene operation visualizes the data using Ascent’s
builtin renderer.

5.1 Compositing Extract
We implemented the Radix-k compositing algorithm [29] using
LegoFlow. This algorithm is based on an earlier work that intro-
duced the binary swap algorithm for parallel compositing of locally
rendered images [25]. In binary swap, pairs of increasingly dis-
tant neighbors exchange decreasing portions of image data until
the greatest distance is reached. Radix-k is a generalization that
reduces the number of iterations by having dense communication
groups within processes. In our implementation, each level has the
same number of tasks that are interconnected across adjacent levels
according to the corresponding radix. The number of tasks, as well
as the array of radices, are provided by the user. This dataflow is
essentially the first phase of compositing. The second phase is a
gather operation on the pieces of data in each of the root tasks of
the Radix-k graph. We reuse the existing k-way reduction graph in
BabelFlow and connect it to the Radix-k graph using the LegoFlow
mechanism for composing graphs. The reduction pattern can be
used both for reduction and gather operations; to switch between the
two requires adjusting the task callbacks and the data serialization.

Figure 2 demonstrates an example of the two graphs we connected
together into a full dataflow. The first one is a Radix-k graph with 8
tasks per level and a radix array of [2, 4]; whereas, the second one is
a 2-way reduction graph. Figure 3 demonstrates the fully composed
dataflow graph. The string inside each task has the format: T <task
ID> <subgraph ID>, <callback ID>. Note that for each single
graph the subgraph ID is 0, but when these subgraphs are composed
the 2-way reduction graph, which follows the first subgraph, gets an
ID of 1. The callback ID’s are local to each subgraph and describe
the function of each task. In some cases, multiple levels of a graph
perform the same function and hence have the same callback ID such
as callback 2 in Figure 2b. This callback performs the reduction.
Callback 1 in this case is just a relay and callback 3 is used to write
the resulting image to the disk. As Figure 3 demonstrates, callback
ID’s can clash with similar ID’s in other subgraphs. To avoid the
clash, callback ID’s are keyed together with the subgraph ID’s.

RadixKExchange radixk_gr(...);
KWayReduction gather_gr(...);

RadixKExchangeTaskMap radixk_tm(...);
KWayReductionTaskMap gather_tm(...);

std::vector<TaskMap*> tm_vec{
&radixk_tm , &gather_tm};

std::vector<TaskGraph*> gr_vec{
&radixk_gr , &gather_gr};

ComposableTaskGraph radixk_compositing(gr_vec);
ComposableTaskMap radixk_compositing_tm(tm_vec);

Listing 2: Combining two dataflows in LegoFlow.

Listing 2 is a short code excerpt that demonstrates the ease
with which a combined Radix-k compositing dataflow can be pro-
duced. The RadixKExchange object defines a Radix-k pattern
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Figure 2: Two task graphs that constitute the full Radix-k dataflow graph. The strings inside each task have the format: T <task
ID> <subgraph ID>, <callback ID>.
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Figure 3: Composed Radix-k and 2-way reduction graph. The
strings inside each task have the same format as in Figure 2.

(similar to Figure 2a) and KWayReduction object defines a reduc-
tion graph (similar to Figure 2b). The combined pattern is cre-
ated by just passing an array of subgraphs to the constructor of
ComposableTaskGraph. Note that the parameters for each sub-
graph are passed independently via each subgraph constructor. For
example, the Radix-k subgraph will receive the radices array and the
reduction subgraph—the number of tasks at the first level and the re-
duction fan-in (e.g, 2-way, 4-way, etc.). Task maps are created in the
same way, that is by combining task maps of the subgraphs into one
task map. In total, less than ten lines of code are needed. Compared
to the original situation in BabelFlow, we did not need to implement
new classes from scratch (e.g., a new class for Radix-k compositing)
and did not have to revert to error-prone code rewrite. We also did
not have to deal with task ID and indexing issues, which are handled
by the LegoFlow insfrastructure. Most importantly, we can easily
modify or augment the functionality of the combined compositing
dataflow by either using a different reduction pattern or adding some
filtering layer. In such case, we just need to change or add an-
other subgraph to the array passed to the ComposableTaskGraph
constructor.

The composed dataflow was encapsulated into an Ascent extract.
Filters and extracts in Ascent are designed in such a way that they
receive their input data as a Conduit Blueprint node [2]. Conduit’s
goal is to provide an independent data model that allows various
applications to share their data with Ascent. Without a common
data model, in situ processing cannot be generalized. Specifically,
Conduit is a model for describing hierarchical scientific data that is
passed between packages either in core or in serialized form. This
representation supports structured and unstructured meshes, as well
as multi-component arrays.

The extract can be configured through a number of parameters
that are passed as part of the Conduit node. We can specify the
radices array, the color and depth fields of the image data (that
are part of Conduit data fields), and the k parameter in the k-way

reduction subgraph.

5.2 Parallel Merge Tree Filter
The Parallel Merge Tree (PMT) algorithm allows users to extract
topological features in a dataset [21]. It was implemented in Ba-
belFlow as a dataflow graph in a previous work [31]. The byproduct
of the merge tree computation is a segmentation of the data. Essen-
tially, the algorithm assigns a segmentation value to each point in
the dataset and the last layer of tasks stores these values to the disk.

We used LegoFlow to add a layer of pre-processing tasks that
strip ghost cells from the data before it starts being processed by the
PMT tasks that follow in the dataflow. We then encapsulated the full
PMT dataflow into an Ascent filter. Compared to an extract, a filter
in this case allows us add the segmentation values as a new field
in the Conduit data. This data is passed further down the Ascent
pipeline, thereby allowing additional Ascent filters to process it and
eventually visualize it. The PMT filter can be configured through a
number of parameters. We can specify the name of the field from
which the data for PMT processing is taken, the features threshold,
a reduction fanin, and a flag that specifies whether to create the
segmentation field at all.

5.3 Iso-surfaces Extract
In this example, we connected five separate dataflow graphs together
to create a graph that computes and renders iso-surfaces of a dataset.
Figure 4 depicts a schematic diagram of this composed graph. Two
of the subgraphs are the same Radix-k dataflows but with different
task functions. Another two subgraphs use VTK-m [26], a scien-
tific visualization toolkit inspired by VTK and that aims to exploit
parallelism provided by emerging shared-memory architectures.

Previous work [27] used the Radix-k communication pattern to
perform an allreduce operation. We take the same approach and by
adjusting the callback functions in the Radix-k dataflow we get a
subgraph that performs an allreduce operation. This is the topmost
subgraph in Figure 4 and it computes the global bounds from the
bounds of the local datasets, as well as the global minimum and
maximum of the dataset values. The bounds are going to be used
in a later stage for the ray tracing rendering, whereas the dataset
range is used to automatically calculate iso values. This is needed in
case users did not specify explicit iso values but just the number of
desired iso levels.

The second subgraph computes iso-surfaces using the marching
cubes algorithm in VTK-m. It means that the computation can
be accelerated on any available GPUs or potentially make use of
additional CPU cores on the node. This is a clear example of how
the design of LegoFlow enables us to use multi-level parallelism. In
other words, a task can seamlessly use CUDA, OpenMP, TBB or
any other fine-grained parallelism library that targets either GPUs or
many-core CPUs. Note that the subgraph has two inputs, namely the
global bounds (with the data range) and the local dataset, which is
passed directly from the controller. The output is then the iso-surface
data from the marching cubes algorithm and the global bounds (with
the data values range).



Allreduce (Radix-k graph)

Marching cubes (using VTK-m)

Local rendering (using VTK-m)

Compositing (Radix-k graph)

2-way reduce graph

Local bounds of data Dataset

Figure 4: A dataflow graph composed of five separate subgraphs
and designed to compute and render iso-surfaces of a dataset.

The third subgraph uses VTK-m to run a ray tracing-based render-
ing of the local iso-surface data. At this stage the global bounds are
used to compute the default position and the direction of the camera.
The camera parameters need to be identical between tasks so that we
are able to perform image compositing correctly. Finally, the fourth
and fifth subgraphs form the exact same compositing pattern used in
the first example in 5.1. In the end, the output image is written to
the disk.

Creating this dataflow involves not much more code than is pre-
sented in Listing 2. Without LegoFlow, this process would have
been difficult, tedious, and most importantly, error-prone. Same
code (e.g., Radix-k pattern) would have to be copied over, task in-
dices would have to be tailored for this particular case, and future
adjustment would cause code changes across all of the implemen-
tation. We encapsulated the dataflow as an extract in Ascent with
parameters for either the iso values or the number of iso levels,
radices array, and the output image size and name. It is also easy to
add parameters to adjust the camera configuration.

6 EVALUATION OF CASE STUDIES

This section focuses on evaluating the contributions explained earlier.
Specifically, we evaluate the integration of LegoFlow with Ascent
and the filters / extracts that are part of this integration. We then
highlight the use case in which a complete application with an
Ascent in situ stack executes on top of a non-MPI runtime.

The use cases are as follows:

1. LegoFlow-based compositing extract in Ascent as presented in
Section 5.1.

2. LegoFlow-based segmentation filter as described in Sec-
tion 5.2.

3. Computation and visualization of iso-surfaces in situ (using
the extract in Section 5.3) in a LULESH code running entirely
on Charm++ without any reliance on MPI.
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Figure 5: Execution times of Ascent analysis in Laghos. The blue
line represents the runs with LegoFlow Radix-k compositing and the
red line are runtimes with native Ascent compositing. In both cases,
rendering is performed by Devil Ray.

4. Scaling of the LegoFlow-based Radix-k dataflow running on
non-MPI runtimes, i.e, Charm++ and Legion.

We ran most of the experiments on Summit, a 200 PF heteroge-
neous system at Oak Ridge National Laboratory [4]. At the moment,
this is one of the major pre-exascale machines in the Top500 list.
Each node comprises two POWER9 processors with 22 cores each
and six NVIDIA Volta V100 GPUs. The system is interconnected by
Mellanox EDR InfiniBand network. The vast majority of the floating
point compute capability on Summit comes from the GPUs [34] and
is aimed to be used by scientific simulation codes. In situ analytics
can use either CPUs or GPUs depending on the particular problem
at hand. LegoFlow does not place any restrictions in this regard,
namely, a callback function in a task can run either CPU or GPU
code.

6.1 LegoFlow-based Compositing Extract
In this case study, we look at in situ analysis of Laghos (LAGrangian
High-Order Solver) [6], which is a miniapp that solves the time-
dependent Euler equations of compressible gas dynamics in a mov-
ing Lagrangian frame. It uses high-order 2D and 3D meshes and ex-
plicit high-order time-stepping. Laghos captures the basic structure
of many other compressible shock hydrocodes such as BLAST [9]
and is a proxy-application for the next-generation multi-physics code
MARBL [32]. The reason for focusing on Laghos is that higher-
order data visualization—particularly one that uses dataflow graphs
for volume rendering—is an interesting challenge we aim to tackle.
For now, however, we focus on non-volume rendering and parallel
compositing with LegoFlow.

The Ascent pipeline consists of a Devil Ray-based [5] filter fol-
lowed by the LegoFlow compositing extract. Devil Ray is a portable
ray-tracing library for visualizing high-order meshes and it performs
local, per-rank rendering of the high-order mesh data. It is available
in Ascent both as a filter and an extract. For our evaluation we use
the Devil Ray filter so that the resulting images can be passed to the
compositing extract. The Devil Ray extract is used for comparison
since it performs the compositing using VTK-h [8], which is a thin
layer on top of VTK-m [26] that adds communication capabilities
through MPI and DIY2 [27]. VTK-h is used in Ascent by default
for all the renderers.

Laghos offers a choice of scenarios to run. Since our interest
lies in visualizing the data, we selected the Taylor-Green vortex
scenario and a 3D cube mesh. The ratio between MPI ranks along
each axis was set to 2:1:1. This led to selecting MPI process counts
to be 16, 128, 1024, and 8192. Using 32 ranks per node, we ran the
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Figure 6: Execution times of Laghos. The blue line represents
the runs with LegoFlow Radix-k compositing and the red line are
runtimes with native Ascent compositing. In both cases, rendering
is performed by Devil Ray.

simulation on 1, 4, 32, and 256 nodes, respectively. Based on the
process counts, the radices arrays that we used were: [4, 4], [4, 4, 8],
[8, 8, 16], and [8, 8, 8, 16], respectively.

Figure 5 presents the execution times of the Ascent analysis
pipeline in the simulation. For lower rank counts, local rendering
dominates the runtime and the compositing part remains a much
smaller component. The results for LegoFlow-based compositing
almost overlap the default VTK-h compositing. It is important to
note that Radix-k performance depends on the choice of radices.
The longer the array of radices the more levels the graph has, which
means more work per process. On the other hand, a shorter array of
radices means that some of the radices will be higher, which means
more dense communication groups within the graph. We did not
tune the radices array and this might explain the slight difference for
8192 processes.

Figure 6 presents the execution time of the complete Laghos
simulation run, including computation and analysis. The time scale
is logarithmic and, as expected, the analysis part in Ascent is only
a small percentage of the total runtime. The results for LegoFlow
compositing and the default compositing almost overlap.

6.2 LegoFlow-based Segmentation Filter
This use case evaluates the in situ execution of the PMT filter de-
scribed in Seciont 5.2. The dataset we used is based on the output of
a large-scale simulation of autoignition in a Homogeneous-Charge
Compression Ignition (HCCI) engine and has been produced with
the KAUST Adaptive Reacting Flow Solvers (KARFS) [23]. The
original output was a volume of 512 ⇥ 512 ⇥ 512 grid points. In
order to perform experiments on larger core counts it was replicated
to a larger 1024 ⇥ 1024 ⇥ 1024 grid. The data is periodic and since
features are distributed roughly uniformly across the simulation do-
main the inflated data represents a good proxy for significantly larger
simulation runs.

The pipeline consists of the PMT filter followed by Ascent’s scene
action that volume-renders the segmentation field. Figure 7 shows
the rendered output. The transfer function and the color palette are
configurable through the parameters passed to the scene action, and
we modified them to filter the surrounding feature-less segment (i.e.,
lower part of the merge tree). Figure 8 presents the execution times
of the pipeline for increasing MPI rank counts. In each case we used
32 MPI ranks per node and the times reflect both the execution of
the PMT algorithm as well volume rendering. The black dashed
line represents perfect scaling and the results show good strong
scalability with some slowdown at the highest core count. A number

Figure 7: Volume rendered segmentation field produced by the PMT
filter.
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Figure 8: Execution times of the PMT pipeline in Ascent that in-
cludes computing the merge tree and the segmentation, as well as
performing parallel volume-rendering of the segmentation field.

of factors could be at play, one is the increased overhead and another
one is the potential cost the volume rendering of the local data,
which at the highest scale has 127K elements. The results, however,
are still comparable to the original BabelFlow study that reported
similar strong scaling behavior.

6.3 Iso-surfaces Produced by LegoFlow
In this use case, we look at the iso-surfaces extract described in
Section 5.3 and run it in an Ascent pipeline in a number of scenarios.
This use case highlights both the portability and composability of
dataflow graphs in in situ analytics.

In the first scenario, we generated an example dataset using Con-
duit helper routines and passed it as an input to the LegoFlow-based
iso-surfaces extract. The goal was to validate that the resulting
image, shown in Figure 9, corresponds to an image produced by
a native Ascent pipeline consisting of the contour filter and a ren-
der scene. In both cases, the same VTK-m routines are used to
first compute iso-surfaces using the marching cubes algorithm and
then render them using ray tracing. The existing contour filter uses
VTK-h to compute the global bounds of the data, which means the
communication is delegated to DIY2 [27] and MPI. In our case, the
LegoFlow-based extract replaced the MPI-centric communication
with a runtime-agnostic dataflow pattern.

In the second scenario, we added Ascent instrumentation to the



Figure 9: Iso surfaces produced and rendered by a LegoFlow graph
composed from five separate subgraphs.

Figure 10: Iso surfaces of LULESH pressure data resulting from the
LegoFlow-based extract running on top of Charm++.

Charm++ port of LULESH [20], which stands for Livermore Un-
structured Lagrangian Explicit Shock Hydrodynamics. It is a proxy
app that approximates the hydrodynamics equations discretely by
partitioning the spatial problem domain into a collection of volumet-
ric elements defined by a mesh. The Charm++ port does not change
the physics computations, but it further subdivides the domains and
assigns each sub-domain to a separate chare in a 3D chare array. The
sub-domain data is used to initialize the Conduit node that is passed
to Ascent.

When the LegoFlow extract is executed, the Charm++ controller
creates a new chare array that corresponds to the dataflow graph. In
a standalone application, as in the first scenario above, the execution
of Ascent is driven by the main chare that can directly create new
chare arrays without any limitation. When we run Ascent and all
of the filters / extracts as part of a LULESH chare, Charm++ places
limits on creation of new chare arrays. Specifically, these chare
arrays can only be created asynchronously. This means that the first
time we execute Ascent we just signal that we want to create a chare
array for our dataflow graph, we then provide a callback, which is a
chare entry function, and this callback will be called by Charm++
once it finishes creating the new chares. This callback also broadcast
the handle for the new chare array so that we are able to invoke
functions in the new chares. Our approach, therefore, for managing
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Figure 11: Execution times of LegoFlow Radix-k compositing run-
ning on top of Legion, Charm++, and MPI runtimes.

this interaction was to make minimal changes to existing LULESH
chares and create special in situ chares. These chares call Ascent to
initiate the creation of the dataflow chare array and then receive the
callback invocation with the handle for the new chares. This handle
is passed further as a parameter to the iso-surfaces extract in a second
call to Ascent along with the Conduit node encapsulating the local
LULESH data. The Charm++ controller in the extract then packages
and passes the LULESH data to the corresponding dataflow chare.
Also, LegoFlow creates a status chare that gets notified whenever
dataflow chares start and finish executing. This way it can measure
chare execution times and destroy the whole chare array in the end.

Figure 10 depicts three iso-surfaces produced by the chares exe-
cuting the dataflow graph. The iso-values are computed automati-
cally after the first layer in the graph computes the global data range.
Input data are the LULESH pressure values at the 100th iteration.
The run was performed on a small 32 ⇥ 32 ⇥ 32 dataset with 8
LULESH chares and 8 analysis chares.

It is important to note that LULESH chares do not wait for the
dataflow chares to finish. The input data is copied when it is passed
to in situ chares and there is no danger of data corruption. This allows
the simulation to be overlapped with in situ analytics similar to some
other in situ frameworks such as Damaris/Viz [15] or TINS [14]. The
difference in our case is that we are not bound to a single runtime.
Furthermore, we do not need to dedicate cores to either simulation or
analytics. A tasking runtime will usually schedule any ready-to-run
task on any available core.

6.4 Scaling Radix-k Compositing
In this set of experiments, we compare the weak-scaling execution
times of the Radix-k dataflow across the MPI, Legion, and Charm++
runtimes. Secion 6.1 describes that we used Devil Ray to render
images of local data as an input to the LegoFlow-based compositing
extract. We take the same approach in this case as well. For this
purpose, we ran the Devil Ray renderer at the same increasing scales
storing the local images at each scale. Then we read these images
and used them as input to the Radix-k compositing dataflow that
was executed on top of Charm++ and Legion.

The Charm++ processing model identifies a logical node (i.e.,
an OS process) and processing elements (i.e., worker threads) on a
logical node, such that each processing element can independently
execute a chare at any given moment. We ran the experiment with 32
logical nodes and one processing element per node. This is a similar
setup to the previous MPI-based case study with 32 processes per
Summit node and one thread per process.

For Legion, we have performed minimal modification to the origi-
nal BabelFlow controller to leverage the new composable task graph.



Also in this case we run experiments using the same configuration
with 32 processes per Summit node. As described in Section 3.2,
this implementation relies heavily on the runtime’s ability to dis-
tribute and manage large number of tasks which currently translates
to increased runtime overhead at scale.

Figure 11 presents the resulting execution times for the Charm++,
Legion, and MPI runtimes. The scaling trend for all three runtimes
is on par with the results of executing a reduction-based compositing
dataflow reported in the original BabelFlow study [31]. It is clear,
however, that there is a room for improving the scaling behavior
for both Charm++ and Legion. For the former, this could involve
different load balancing strategies or limiting the number of chares
for bigger dataflows. For the latter, there is a recent work from
the Legion team that attempts to address the issue of scalability
of collective operations [12]. This could potentially benefit the
performance of the Legion controller in the future.

7 CONCLUSION

In this work, we introduce LegoFlow, a methodology that inte-
grates portable dataflow graphs into in situ analytics and makes
these graphs composable. The work builds upon an earlier effort
in BabelFlow, whilst preserving the core strength of decoupling the
analysis / visualization algorithm flow from the underlying runtime
system. Users can now easily reuse existing algorithms, or quickly
construct more complex dataflows for various in situ scenarios.

We explain the design of LegoFlow and demonstrate the ease
with which new dataflows can be constructed. The integration with
Ascent as well as the various filters and extracts that are part of
this integration effort are presented in more detail. We then eval-
uate the methodology by running two different kinds of extracts
and one filter. Most importantly, we highlight the experiment in
which LULESH was coupled with LegoFlow-based in situ analyt-
ics and both the simulation code and the analysis code ran on top
of Charm++. Leveraging the asynchronous task execution, this is
an example of overlapping simulation and in situ analytics. This
direction could be further expanded by implementing all of VTK-h
communication patterns as LegoFlow dataflows, a possibility which
is directly enabled by the composability mechanism. Essentially,
this can make Ascent, and in situ analytics in general, transparently
portable across different runtimes and architectures.

For future work, we plan to optimize the runtime controllers to
improve performance. Also, we will investigate the option of making
the dataflow graphs dynamic, that is creating additional nodes on
the fly. This will enable more algorithms to be expressed as dataflow
graphs.
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