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Abstract—As LiDAR sensors become more precise and widely
used, effectively managing and rendering large amounts of point
data is becoming increasingly difficult. Available web based
solutions for large scale point cloud visualization do not take
advantage of modern cloud optimized data formats which are
well suited for parallel and efficient data streaming. Furthermore,
current web visualization tools do not take advantage of new
capabilities like persistent file caching, losing their data when a
tab/window is closed. In this work, we present the first web based
viewer for point cloud data using a multi-layer cache system that
allows to store data using both file and memory storage directly
from a browser. Furthermore, we also introduce the first open
source viewer for the cloud optimized point cloud (COPC) data
format employing a parallel workflow using WebGPU to stream,
process and render point cloud data. Experimental studies of
the multi-layer cache system demonstrates to provide the best
performance in different configurations, including offline data
visualization.

Index Terms—web visualization, cloud optimized data formats,
point cloud

I. INTRODUCTION

Point cloud data is employed in several domains, such as
surveying and geo-mapping, city planning, computer vision
and autonomous vehicle navigation, and processing. In these
domains, extracting the required data and rendering it in real
time is critical. As the use and precision of advanced depth
sensors for collecting 3D data increases, so does the demand
for efficient management of datasets to enable interactive vi-
sualization of point clouds. Similar to numerous visualization
tools, the web provides improved accessibility, and modern
browsers are facilitating seamless analysis and visualization
of data, comparable to traditional standalone applications.

However, making large point cloud data readily available
for transfer from the cloud can be challenging due to its
unstructured nature and large size. While LAS/LAZ are the
standard format in LiDAR, other formats like Potree [18] and
Entwine Point Tile (EPT) divide the data into many small
files to offer better flexibility and loading performance, but
are not cloud friendly (i.e., requiring reading too many files).
The Cloud Optimized Point Cloud (COPC) [10] has recently
emerged as an alternative file format that allows for the storage
of spatially clustered point data organized in an octree using
a single file. This allows for incremental partial reads over
HTTP and streaming a chunk of data pertaining to specific

nodes from a large dataset. The only viewer for this promising
cloud-optimized format is implemented with WebGL, and
unfortunately it is not open source.

Interactively rendering point cloud data in real-time is chal-
lenging due to their large and complex nature, which requires
parsing even after fetching. However, by temporarily storing
parsed and processed point cloud data in a cache, the renderer
can quickly retrieve the point data without the need for
redundant fetching and processing, thus facilitating interactive
rendering. Caching data structures built using the memory
available to the browser are cleared automatically when closed.
However recent APIs, such as Origin Private File System
(OPFS), now finally allow browser applications to store data
in persistent caches on disk. This not only enables applications
to limit the data transferred across different sessions through
caching, but also enables offline data visualization.

The contributions of this work are:
1) the first open-source viewer1 of COPC data imple-

menting a parallel workflow leveraging WebGPU [3] to
efficiently stream, render, and store data asynchronously;

2) an implementation of a multi-layer caching scheme
that leverages both non-persistent and persistent caching
(using files, i.e., the first one on a browser), allowing
users to replace slower remote data streaming with local
reads even after a browser reload; and

3) experimental study of the performance of the multi-layer
cache system including the use of a parallel pre-fetching
strategy.

II. BACKGROUND

Point cloud data contains positional information, intensity,
and metadata of the scanner, among other details. Large-scale
point data can pose challenges to memory usage and inter-
active rendering speed. Hierarchical datasets are a solution,
as they reduce memory usage, improve rendering speed, and
enable the handling of large datasets that cannot fit in memory
at once. The first multiresolution rendering system for point
data, QSplat, was developed by Rusinkiewicz and Levoy [17].
The system used a hierarchy of bounding spheres to gradually
load the scanned model and utilized a binary tree to divide

1https://github.com/ComputingElevatedLab/WGPU-COPC-Viewer



the space along its longest axes, as opposed to the commonly
used Octree. Gobbetti et al [6] expanded on this work by
developing a GPU-friendly layered point cloud structure that
stored a subsample of the point cloud in each node of the
hierarchy and used a binary tree to split the data along its
longest axis.

LAS/LAZ is a commonly-used standard format for storing
point cloud data. However, its large file size can lead to inef-
ficiencies in handling the data, particularly when rendering or
querying, as these operations require loading the entire file into
memory first. Potree and EPT are hierarchical point cloud data
files that support out-of-core and LOD-based rendering [19] by
enabling the loading and unloading of different data sections
as needed. Plasio [23], PointCloudViz [16], and LidarView [5]
are WebGL [7] based LAS/LAZ point cloud viewers which
do not support hierarchical acceleration structure. Primarily
designed to handle the hierarchical Potree file format, Potree
is based on Three.js [1] and has the capability to render point
clouds containing millions of points in real-time.

Various data organization libraries and tools, such as En-
twine [9], [22], Potree Converter [18], and PDAL [2], are
available to arrange LAS/LAZ point cloud data into an octree-
based hierarchical structure to enhance rendering performance.
Although these file formats give better rendering performance,
they are not streaming cloud-friendly. In particular, these
formats require data to be broken down into hundreds to
millions of small files making it challenging to access and
manage data when stored in the cloud.

HOBU Inc [9] addressed the issue of increased network
latency and I/O overhead when accessing previous data files
from the cloud in earlier hierarchical data files by developing
the Cloud Optimized Point Cloud (COPC) in 2021. COPC
overcomes the limitation of storing point cloud data in multiple
files by storing all the hierarchical data in a single file and
enables efficient and streamlined access to the file. The COPC
format is essentially a LAZ file that includes indexes to access
structured point data for each part of the dataset, allowing for
the streaming of only the necessary data. COPC files can be
supported by any LAZ viewer since it is itself a LAZ file.

For example, Potree [18] supports LAZ but has no dedicated
support for COPC, which is used as a LAZ file. Potree
achieves improved performance primarily due to the use of
potree files, which are tiles of point clouds that are generated
by combining nodes based on a hierarchical step size param-
eter. This hierarchical structure allows Potree to efficiently
stream and visualize large point cloud datasets by loading only
the tiles needed for the current view, rather than the entire
dataset [21]. However, when using COPC files Potree would
load the entire file into memory as a LAZ file.

HOBU Inc have also created a WebGL-based COPC viewer
[8]. However, this viewer is closed source and it does not take
advantage of any caching mechanism and thus must repeatedly
reload regions of the data from the server that come back
into view. This repeated reloading impacts the responsiveness
of the system on slower connections and incurs additional
bandwidth costs to the application. Our work presents the first

open-source COPC viewer that supports parallel data fetching
and parsing, multi-level caching, and prefetching as well as a
WebGPU out-of-core point cloud renderer.

Prefetching is a widely used optimization technique, where
data is fetched and cached from remote sources in parallel to
the main program’s execution. The purpose of prefetching is
to hide data access latency in a system [13]. Most prefetching
strategies are history-based predicting future data based on us-
age patterns or history [11], [12]. There have been applications
of unsupervised machine learning to know the block of data
that needs to be prefetched from the source [4]. For point cloud
data, Schütz et al. [20] implemented a prefetching technique
that fetched four points near the memory of each point fetched
for unstructured point cloud data. The evaluation showed that
this approach resulted in prefetching being up to three times
faster compared to situations where prefetched options were
not used. In this work we use a simple pre-fetching strategy
where we fetch points close to the current view at a coarser
resolution. This strategy is implemented only to test the multi-
layer caching system and is not compared to other existing
pre-fetching strategies.

It is crucial to emphasize that the contributions of this work
do not focus on point cloud rendering, and therefore, we
do not provide a qualitative comparison of rendering results.
However, it is worth noting that systems utilizing different data
formats, such as Potree [18] and advanced rendering pipelines
like UnityPIC [24], can benefit from the contributions of this
work by enhancing their data access strategy through file
storage on the browser and implementing multi-layer caching.
To be noted also that this is the first work leveraging Origin
Private File System (OPFS) on a browser for storing files, this
is a new feature just recently available on browsers.

III. IMPLEMENTATION

A fundamental challenge in large-scale point cloud ren-
dering is retrieving large data in real-time while keeping
the application interactive. To achieve efficient parallel data
streaming, we only fetch the necessary data that are in the
current user view and then start pre-fetching other data. Data
is fetched in parallel using web workers [14], which enable
multiple instances of JavaScript code to run independently in a
global context separate from the main thread window context.
This approach allows us to concurrently perform data reading
and parsing operations, thereby enhancing performance. To
ensure synchronization between the worker threads, we wrap
each worker instance within a promise. This allows us to
synchronize all threads by waiting for all promises to resolve.
The COPC format’s hierarchical octree data structure, along
with the information about the size and file offset of each data
chunk provided by the format, allows workers to independently
and in parallel fetch the necessary data using range queries.

The rendering process in our system utilizes a Hierarchical
Level of Detail (HLOD) technique. This means that the root
node of the tree is always rendered, and progressively lower-
level nodes in the octree are added to the scene based on
the quality required for each region. This enables the renderer
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Fig. 1: Our system performs view dependent LOD rendering.
Region 1 near the camera is detailed (using high resolution
data), while Regions 2 and 3 further away are rendered using
a coarser data resolution. Points are colored based on elevation.

to display varying levels of detail based on the current view
(see Figure 1). There are three main types of LOD techniques
available: hierarchical, continuous, and discrete. In our ren-
derer, we have developed a hierarchical LOD renderer where
a change in resolution is gradual, as more and more points are
added continuously based on the level of resolution required.
We make use of the COPC header information to traverse the
tree efficiently. The COPC header provides information about
each node’s geometry and the number of points in it, allow us
to skip nodes outside the region of interest.

A. Caching Strategies

To improve the performance of our point cloud viewer,
we integrated a hash map-based LRU Cache in JavaScript.
This enables us to store and retrieve point data efficiently
using key-value pairs. By using an LRU update strategy, we
prioritized frequently accessed data and removed the least
recently used data once the cache reached its capacity. While
the implementation of an LRU Cache is a commonly used
technique, it was critical for achieving our performance goals
in our open-source COPC renderer platform. In contrast, the
proprietary COPC viewer does not appear to utilize a cache.

It is important to note that the cache used here is non-
persistent, meaning it can only temporarily hold data in
memory (i.e., until a tab, a window or a session is terminated).
On the other hand, a persistent cache provides data durability
and fault tolerance, allowing for the safe storage and retrieval
of data, even in the event of system crashes or unexpected
failures.

We utilize an Origin Private File System (OPFS) to maintain
persistent cache data, where datasets are stored. We create
individual binary files for each octree node to align with both
the COPC structure and buffers in WebGPU, allowing for
efficient data access and updates for each node. This strategy
also avoids need for additional octree traversal. By adhering
to the COPC format, we can access data for each node
effectively during point cloud rendering by simply reading the
corresponding file from the disk.

File system resources are also limited, and thus we must
balance between ensuring relevant data is present in the cache
and its size on disk. To achieve this, we implement an LRU

updating policy for the persistent cache as well, using a map
stored in a file (i.e., persistent map) which is expected to
be updated whenever a file is stored in or removed from the
client’s OPFS. Files are evicted from OPFS when the number
of cached nodes exceeds the maximum allowed.

To avoid the overhead caused by File I/O during frequent
updates of the persistent map during every file read or deletion,
we implemented a non-persistent LRU cache as a staging map
(i.e., key is the file name, value is the last time it was used,
entries are stored in order). This allows the persistent map
file to be updated efficiently in memory to reduce file system
access. At the program start, the staging map is initialized
with the state of the persistent map. We implemented a
throttle system to periodically update the persistant map. This
ensures that the staging map has sufficient time to process and
consolidate any changes before writing them to the persistent
map file (i.e., the two caches are always in synch).

Based on the camera’s position and orientation, we traverse
the tree and identify the list of nodes that require rendering.
We then verify if any of these nodes exist in the GPU memory
in the current render pass. For new nodes that are not in GPU
memory, we first check if they are present in the LRU non-
persistent cache. If the nodes are not found in the LRU non-
persistent cache, we then check the persistent cache before
resorting to a network request to retrieve the nodes from a
remotely hosted file(see Figure 2).

B. Improving Caching Performance

We apply a number of techniques to improve cache latency
and reduce the size of data that must be retrieved.

a) Pre-fetching strategy: Our pre-fetching strategy is
based on the use of frustum culling, to reduce the number
of rendered points and to prefetch only visible or nearly
visible nodes. We check each node’s bounding box against
the frustum to see if it is visible. However, our goal is not
to only include the visible points, but to also guarantee the
existence of a coarser level of data in the scene for nodes
that may soon become visible. Prefetching this data ensures
that when the camera moves some data will be immediately
available for display. The coarser node to be prefetched is
defined as the level one coarser from when nodes start being
culled by frustum culling. This coarse node will be prefetched
to provide data for the nodes that have been culled. Frustum
culling efficiently identifies coarser level nodes to prefetch in
our system, ensuring that we always have points at a certain
specified coarser level.

For each node that needs to be prefetched, we check if
it is in the nonpersistent or persistent cache. If the node is
in the nonpersistent cache, it has already been loaded and is
available. If the node is in the persistent cache we read the
binary file and load it into the nonpersistent cache. If the node
is not in either cache, it must be fetched asynchronously from
the remote server and is place in both caches. The prefetching
follows the same strategy as fetching with the difference that
we do not create a buffer but rather only make data available in
the cache. Prefetching is done between the end of the fetching



operation and before the start of another traversal and fetching
operation.

b) Screen Space error: To further optimize the point
cloud rendering process and improve performance, the deci-
sion to traverse deeper into the octree is made by considering
both frustum culling and screen space error. Screen space error
involves calculating the projected radius of the octree node in
screen space based on its distance from the camera and camera
orientation. This projected radius is compared to a threshold
value, which is based on the desired balance between visual
quality and rendering performance, to determine whether the
node should be rendered or not.

c) Aborting Stale Asynchronous Requests: One potential
issue when fetching nodes asynchronously is that, when the
camera moves rapidly, it is possible to flood the system with
a set of requests that quickly become irrelevant because they
have moved out of view again by the time they are loaded.
To address this issue, we used the AbortController, which
allows passing a signal to the running operation that needs
to be canceled. Each time the event is fired to traverse the
octree and fetch new data, a new instance of AbortController
is created and a previously existing instance signal is set to
aborted. This signal is checked in the previous operation, if it is
not finished we wait for the current batch of threads to finish
the operation and checks if the abort signal was sent from
outside the function. If the signal was external we terminate
the operation early, freeing up the thread for use by another
operation. We apply the same abort strategy to prefetching
operations as well.

d) Buffer Memory Management: Point cloud data sets
can be quite large, and thus we must ensure that our renderer
stays within the memory limits of the end user’s GPU. This is
especially a concern in WebGPU, where GPU buffer objects
that go out of scope do not release their corresponding
GPU memory until the JavaScript garbage collector runs and
destroys them. To reduce our memory footprint we track the
buffers in use by the application and immediately destroy
them when they are no longer needed, instead of waiting for
the garbage collector. Buffers are also cached and re-used if
possible in multiple render passes, to reduce the number of
buffers created and destroyed to improve performance.

IV. EVALUATION

We performed an experimental study to evaluate the per-
formance of the system using different caching strategies:
no caching; LRU non-persistent cache; and LRU persistent
and non-persistent cache. As our work focuses on improving
caching and load times, we only report results on the time to
retrieve the data to be rendered for our out-of-core renderer.
The experiments are run in Chrome Canary 115.0.5741.0 on
a laptop with a 2.3 GHz i7-12700H processor, 32 GB DDR5
RAM and a 24GB Geforce RTX 3070 Ti GPU.

We report results on two LiDAR datasets: (i) a dataset
captured in Logan (UT) containing 184,510,697 data points.
The original LAZ (compressed LAS) file was sourced from
Open Topography [15]; (ii) a larger dataset of the SOFI

Fig. 2: The workflow of how a user’s query is processed
through our two-layer cache system. If the data is already
available in the non-persistent cache this is returned to the
viewer for rendering. Otherwise, our system checks for avail-
ability in the persistent cache accessing the persistent map. If
data is not found in either cache the parallel fetcher requests
the data from the remote resource.

stadium containing 300,000,000 points provided by the COPC
website. To read, process, and write the LAZ file into a
hierarchical COPC file format, the Point Data Abstraction
Library (PDAL) was employed with the LAS reader to read
and the COPC writer filters to write the processed data. The
datasets in COPC format were both hosted for evaluation on
GitHub and accessed using two different network connections:
a very fast 330Mbps and a modest 5Mbps. We perform tests at
such different speeds to highlight the benefits of caching and
streaming techniques introduced in this paper in different sce-
narios, from high speed connections to applications operating
in a mobile context or in rural areas at much lower speed.

The evaluation is performed over a close camera orbital
motion with seven different positions around the scene equidis-
tant from the center of the dataset. We set the screen space
error threshold to 50, the perspective camera is configured
with a field of view of 90 degrees, the frustum’s near plane
is at 0.1 and far plane is at 20,000. We set the maximum
number of worker threads that a batch can spawn to 19 out of
the 20 logical cores available to ensure that the main thread
is not included in the count of worker threads. We set the
max number of nodes allowed to be stored in non-persistent
cache to 150, and 250 for the persistent cache (each node
has on average 69,000 points, ∼2.4MB). In order to access
the performance of different caching options, we recorded
the performance of each strategy individually. For persistent
caching, we recorded performance twice to examine its benefit
when the browser or active tab is closed and reopened.

Figure 3 presents the performance of different caching
strategies (and network speed) during our 7-point orbital
navigation, with the x-axis representing the forward position
during orbital motion. Figure 4 displays the time required for
each individual step (at speed 5Mbps).



Fig. 3: Cumulative data retrieval time performance of multiple data caching options at different bandwidth speeds. The
combination of persistent and non-persistent cache is better than any other when the tab/window is reloaded which is as
expected (green, 2-3 times speed up). For very fast networks (left, 330Mbps) the use of caching provide little (with persistent
caching) to no performance improvement. Great benefits are instead visible for slower networks (right, 5Mbps).

Fig. 4: Plot of individual time taken to retrieve the Logan
dataset at a certain step while using different data caching
options (at speed 5Mbps).

Fig. 5: Cumulative data retrieval time performance of multiple
data caching strategies using very large dataset SOFI stadium
(3M points) on a 330Mbps network. Performance results
confirm trends seen for the smaller dataset.

These results show that when using very fast network (a) the
overhead of accessing both layers of cache (persistent and non-
persistent) is the slowest strategy. After the first few steps the
LRU non-persistent cache configuration improves performance
as data can be loaded from the cache rather than the network.
In the case of a slower network (b) instead, the network latency
is much higher than the caching search and retrieval overhead
favoring strategies that use cache. In particular at later steps

the combination of both cache provides the best performance
(for first time loading). In Figure 3, we report a breakdown of
the various timing at different steps.

When evaluating the system’s performance with both
caching layers after re-opening a closed tab/window, the
performance benefits of persistent caching are quite significant
(see Figure 4 and 3) providing a 2− 3× faster data retrieval.
We expect this performance gain to grow over time as less data
must be retrieved from the server. Furthermore, experiments
using the larger dataset (i.e., 3M points SOFI stadium) show
similar trends, for we report only results using a 330Mbps
network speed in Figure 5.

Finally we evaluated our system using pre-fetching, i.e.,
loading in parallel also a coarse level data for areas that
are not currently visible. From both cumulative (Figure 7)
and individual (Figure 6) timing plots it is evident that
the initial loading and reloading of the system, the starting
time remains constant, as prefetching begins only after the
first step. It is worth noting that the difference between the
system’s performance with and without prefetching is very
distinguishable in Figure 7 where, as the camera moves, the
gap between prefetching and not increases for first time loads
and reloads.

Prefetching in orbital motion involves each camera step
moving forward in an anti-clockwise direction. This can result
in cache pollution, i.e., due to cache memory limitations pre-
fetched data that is not being rendered is replacing useful data
in the LRU cache. This can be observed in step 4 of Figure
6, both during initial loading and reloading. However, we find
that the impact of this cache pollution may not be significant
as the pre-fetched data contain few points over a large spatial
domain, and thus has a high probability of being used.

V. CONCLUSIONS

This work introduces the first open source viewer for COPC
data which leverages both WebGPU for parallel data retrieval
and rendering, and a multi layer cache system, consisting of
both persistent and non-persistent cache to enhance caching
also when a browser tab/window is closed. Our findings



Fig. 6: Comparison of the time required to retrieve data in a
system with a persistent and non-persistent cache at a specific
step with or without prefetching.

Fig. 7: Cumulative Retrieval Time with Prefetching and
Without Prefetching on Adjoined Cache (persistent and non-
persistent cache) for First-Time Loading and Reloading Con-
ditions using different network speeds (top 330Mbps, bottom
5Mbps). Overall the pre-fetching improves performance.

indicate that utilizing this integrated cache system yields sig-
nificant improvements in the performance of web-based point
cloud data visualization. By combining both types of cache,
frequently accessed data can be swiftly retrieved from the least
recently used (LRU) cache, while data that has been removed
from the non-persistent cache due to memory constraints
can be accessed from the persistent cache. Furthermore, we
incorporated a simple pre-fetching strategy into our, which
preemptively fetch coarser resolution data before they are
requested for rendering, further improving performance. Our
experimental study demonstrates the benefits of using both
types of cache. In particular, non persistent cache improves
the performance of the system after just a few steps of data

exploration, while the persistent cache allows retrieving data
for rendering after a tab/window is closed from 2 to 3 times
faster than fetching and traditional non-persistent caching. This
functionality also allows for offline (or limited access) data
visualization and is highly applicable to virtually any web-
based visualization tool that needs to fetch large data from
remote data sources.
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