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Figure 1: Interactive visualization of large-scale non-human primate brain data (i.e.,, 6 aligned volumes, each of size

2048x2048x2575)
ABSTRACT

Modern science is inundated with ever increasing data sizes as
computational capabilities and image acquisition techniques con-
tinue to improve. For example, simulations are tackling ever larger
domains with higher fidelity, and high-throughput microscopy tech-
niques generate larger data that are fundamental to gather biolog-
ically and medically relevant insights. As the image sizes exceed
memory, and even sometimes local disk space, each step in a sci-
entific workflow is impacted. Current software solutions enable
data exploration with limited interactivity for visualization and
analytic tasks. Furthermore analysis on HPC systems often require
complex hand-written parallel implementations of algorithms that
suffer from poor portability and maintainability.

We present a software infrastructure that simplifies end-to-end
visualization and analysis of massive data. First, a hierarchical stream-
ing data access layer enables interactive exploration of remote data,
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with fast data fetching to test analytics on subsets of the data. Sec-
ond, a library simplifies the process of developing new analytics
algorithms, allowing users to rapidly prototype new approaches
and deploy them in an HPC setting. Third, a scalable runtime sys-
tem automates mapping analysis algorithms to whatever compu-
tational hardware is available, reducing the complexity of develop-
ing scaling algorithms. We demonstrate the usability and perfor-
mance of our system using a use case from neuroscience: filtering,
registration, and visualization of tera-scale microscopy data. We
evaluate the performance of our system using a leadership-class
supercomputer, Shaheen IL
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1 INTRODUCTION

High resolution microscopy systems and large-scale simulations
generate an increasing amount of data that are often used for vi-
sualization and analysis tasks. Yet, being able to visualize and per-
form analysis remains a major challenge largely due to the lack
of algorithmic and computational solutions to handle, analyze and
reconstruct the increasing amount of data that are being collected.
Several software tools are available for researchers, from free and
open-source solutions, such as Fiji (Image]) [Schindelin et al. 2012],
Vaa3D [Peng et al. 2010], and KNOSSOS [Helmstaedter et al. 2011],
to commercial solutions such as Imaris [Bitplane], Neurolucida [Glaser
and Glaser 1990], Amira [FEI 2016], and Volocity [Slavin et al.
1966]. While each offers varying degrees of functionality in terms
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Figure 2: System overview: (i) Data produced by simulations or high-resolution acquisitions are either generated in or con-
verted to the IDX format and stored locally or on shared filesystems. (ii) The ViSUS client enables remote interactive visualiza-
tion via the ViSUS server that provides fast read access to multi-resolution data queries.(iii) A user/developer can implement
visualization/analysis algorithms using the parallel library provided by the framework interactively through the ViSUS client
or at scale on an remote HPC systems that will eventually update the visualization for further explorations.

of visualization, annotation, and custom analytics, scaling to large

data size remains a challenge for most. Furthermore, while built-
in analytics is generally limited to smaller tasks such as filtering,

adding custom analytics requires rigorous coding requirements that
may not be user-friendly.

This work introduces the first end-to-end software framework
(see Fig. 2) for large-scale interactive visualization and scalable
analysis that also simplifies the definition and execution of scien-
tific workflows on HPC systems. The system exploits properties
of the IDX format [Pascucci and Frank 2001] that enables access
to multiple levels of resolution with low latency suitable for in-
teractive exploration of tera-voxel datasets. Data are produced in,
or are converted to the IDX format using the high performance
/O library PIDX [Kumar et al. 2011] that bridges the gap between
large-scale writes and analytics-appropriate reads. Interactive ex-
ploration is achieved via the ViSUS framework [Pascucci et al. 2012]
that enables seamless streaming visualization capabilities on de-
vices ranging from iPhones to high-end visualization machines, to
multi-display powerwalls, with the data being hosted anywhere
from USB hard drives to remote HPC file systems. Finally, using
a new python software layer we interface the ViSUS framework
with a set of user-defined processing components that can perform
operations on the data either interactively or on dedicated compu-
tational resources (i.e. local or remote).

In this framework, we introduce a parallel library that allows
fast and simple implementation of visualization and analytic work-
flows. To achieve computational scalability, the library builds upon
an existing runtime (i.e. Charm++), a C++ abstraction layer that
allows a user to define the processing algorithms as a set of idem-
potent tasks connected in a dataflow. This abstraction layer intro-
duces two main improvements:

o the user does not need knowledge of the underlying com-
munication or threading managed by the runtime;

o the same task graph can be executed both locally and re-
motely via a common interface for interactive processing
on smaller desktop class systems and also at scale on remote
HPC systems for larger data or compute intensive tasks.

Our key contributions are:

e An end-to-end software framework for interactive stream-
ing visualization and analysis of large-scale scientific datasets;

e Highly concurrent parallel processing abstraction layer that
supports arbitrary analytics and visualization workflows;

e Strong scalability performance for a large set of common
post-processing tasks such as filtering, alignment, stitching
and visualization.

o Improve user productivity, code re-usability and portability
by designing common workflows that execute on both local
desktop PCs and at scale on remote HPC systems;
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We demonstrate the usage of this system in a neuroscience set-
ting, enabling interactive visualization and analysis of large-scale
non-human primate (NHP) brain 3D microscopy data. We present
three algorithms that are experimented at scale on the supercom-
puter, Shaheen II:

o a parallel filter for denoising data;
e automatic alignment and stitching of multiple 3D volumes;
e interactive volume rendering and image composition.

The parallel analysis workflow is configured and launched through
a scripting interface and the output is then used to update the vi-
sualization interactively.

2 BACKGROUND

Structuring and efficiently accessing large-scale data have always
been the aim of several high level I/O libraries. The most prominent
examples are HDF5 [Folk et al. 1999], Parallel NetCDF (PnetCDF)
[Li et al. 2003], and ADIOS [Lofstead et al. 2008]. These libraries
typically store data in traditional row-major blocks. While they
are fast, general-purpose and robust when it comes to data writes,
they significantly lag during reads, a critical requirement for inter-
active, exploratory analysis of large datasets. Parallel IDX (PIDX)
[Kumar et al. 2014, 2012; Pascucci et al. 2012], is an I/O library that
writes data directly in IDX, a hierarchical, cache-oblivious, multi-
resolution data format that can be easily leveraged for fast reads
required for interactive visualization and analysis.

On the visualization side, VisIt [Childs et al. 2012] and ParaView
[Ahrens et al. 2005] are well-known distributed parallel visualiza-
tion and analysis applications. They are typically executed in paral-
lel, coordinating visualization and analysis tasks for massive data.
The data are typically loaded at full resolution, requiring large
amounts of system memory and proximity with data source. More-
over, their use of parallel computing resources is limited to mostly
data-parallel tasks and a separate modality that is not well blended
with data sources external to parallel computing environment. Both
packages, though, utilize a plugin-based architecture, so many for-
mats are supported and have the potential of being extended. The
ViSUS application framework [Pascucci et al. 2012] is designed
around a hierarchical streaming data model available through the
PIDX open library, and enables interactive visualization and on-
the-fly processing [Christensen et al. 2016] in a hardware-agnostic
manner.

The traditional model for parallel computing has been to man-
ually couple sections of serial computing distributed amongst pro-
cessors with the exchange of messages between them. The most
common implementation of this model is the Message Passing In-
terface (MPI) [Gropp et al. 1999] which is supported on virtually
all medium and large-scale computing resources. However, as the
level of parallelism grows it is becoming increasingly difficult, even
for expert users, to develop efficient solutions in this rather low-
level environment. Instead, more recently, so called, task-based
programming models such as Charm++ [Kale and Krishnan 1993]
have been proposed. Rather than requiring users to directly man-
age work distribution and message passing, these systems decom-
pose the processing into a workflow of explicit tasks, which are
automatically mapped to physical computational resources and ex-
ecuted in a parallel environment. While task-based approaches are
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more flexible than MPI, both require expert developers to create ef-
ficient solutions and often needs to be individually optimized for
specific hardware infrastructures.

3 THE FRAMEWORK

Our approach to achieving interactivity in all aspects of the soft-
ware infrastructure is (1) to use a data model that enables both
remote data access to be visualized in a coarse-to-fine progressive
manner while maintaining high-performance I/O for data stored
locally, (2) to map processing workflows to HPC resources with im-
mediate progressive availability of results, and (3) to enable the ex-
ecution of identical workflows on both desktop PCs and at scale on
HPC systems. The scientific visualization pipeline begins with the
production of data from scientific applications (e.g. simulations) or
microscopy scans that are stored on local disks or large shared file
system.

3.1 Data Streaming Infrastructure

The data access layer of the IDX format employs a hierarchical
variant of a Lebesgue space filling curve, commonly referred to as
HZ order. Traditionally, space filling curves have been used suc-
cessfully to develop a static indexing scheme that generates a data
layout suitable for hierarchical traversal. The layout instills both
spatial and hierarchical locality. Conceptually, the scheme acts as
a storage pyramid with each level of resolution laid out in Z-order.
Because of these properties, IDX supports progressive reads of low-
resolution (sub-sampled) data, which is very suitable for streaming
based remote visualization. By converting initially to the hierarchi-
cal space-filling IDX file format, the progressive streaming model
enables this data to be visualized interactively by the ViSUS frame-
work no matter where it is stored.

The ViSUS framework allows interactive visualization and ex-
ploration of large-scale datasets, with the ability to add filters or
simple scripting operations to the visualization pipeline. Our new
python interface allows interactive design of data processing work-
flows that receives an input array of data to perform custom analyt-
ics either locally or at scale remotely. In both the cases, our frame-
work allows data to be streamed in a coarse-to-fine manner for
interactive visualization. The user can create multiple processing
nodes for different workflows to be executed in the same environ-
ment, configure number of nodes and processors for remote HPC
sessions, provide additional parameters to inform the analysis ap-
plication about the current viewer settings (e.g. datasets loaded, ac-
tive filters) and operate on multiple datasets in a single workflow.

3.2 Analytics design library

Applying any algorithm, no matter how efficient, to terabytes of
data will require massively parallel compute resources both in terms
of available storage and processing capabilities. The traditional ap-
proach of solving this challenge is to re-implement the correspond-
ing algorithms in MPI or one of the more recent task-based run-
times. Not only does this require significant expertise in these pro-
gramming models, but it also leads to (at least) two separate imple-
mentations that must be maintained. Instead, we propose to utilize
the components of the interactive workflows discussed above to
build large-scale parallel workflows. More specifically, our system
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provides a simple library for developers of analytics algorithms to
describe their parallel dataflow as a graph of tasks, each of which ei-
ther directly uses the interactive components or minor variations
thereof. To execute a task graph, we create a backend that inter-
prets a given graph and instantiates at runtime a task based appli-
cation based on Charm-++. This shields users from the complexities
of the runtime, provides performance portability across multiple
computing environments and produces efficient and easily main-
tainable systems.

The key insight enabling our system is the fact that much of the
complexity in dealing with parallel implementations comes from
the extreme generality of existing environments. Not only must ex-
isting runtimes support a wide range of communication and syn-
chronization primitives, but they must do so dynamically without
any assumption on the underlying algorithm. Instead, for the type
of large scale data processing of interest here, one typically deals
with a static task graph that is known a priori. The graph may
change in size based on which data must be processed or how many
resources are available, but the basic structure, including a partial
order of operations and all communication steps, is well known.
Therefore, we provide users with a simple interface to describe
their computation explicitly as a graph in which each task has a
predefined set of inputs and outputs and executes a given function.
Each task can be implemented either as a standalone function, that
can be used also in the streaming computations, or even exploiting
existing threading libraries such as OpenMP [Dagum and Menon
1998]. This provides a highly modular yet so far entirely serial im-
plementation of the algorithm of interest. The library dynamically
maps this graph into the execution data model of Charm++, which
will handle the task mapping (i.e. which task is executed on which
processor) as well as the communication. The additional layer of
abstraction provides a number of benefits: First, developing, main-
taining and debugging is significantly simpler as user level code
effectively executes in serial and there exists an explicit (offline) de-
scription of the task graph to study. Second, the system to a large
extent becomes independent of the underlying hardware and sys-
tem software stack. Third, our task graph easily integrates with
existing solutions at all levels of abstraction. It is important also
to note that each task can use arbitrary existing libraries or tools
virtually unmodified since each task is simply a serial execution of
some operation.

An algorithm developer using this library needs to perform three
basic steps: first, implement all tasks used in the algorithm; sec-
ond, provide de-/serialization routines for the objects that are ex-
changed between tasks; and third, extend the TaskGraph class to
describe the dataflow. The first two are generic and are required
in some form for any implementation. The third, represents a pro-
cedural description of the task graph. Tasks are defined by Task
objects that contain a set of input and output ids (i.e. the tasks that
will be communicating with the given task) and a callback id that
defines which function will be executed at runtime by the task. To
define a TaskGraph the user needs to implement a function (i.e.
task()) that given a task id returns a Task object.

Listing 1 showcases an example implementation of a TaskGraph
for a k-way reduction dataflow with an additional wrap-up step
useful for saving the final result of the reduction. This TaskGraph
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together with the definition of the callback function can be used to

perform a volume rendering and composite workflow as illustrated

in Listing 2. The instantiation of the ReductionPlusOne graph in

the example requires to provide the domain decomposition (i.e. the

block_decomp parameter indicates how many blocks the domain

should be divided into in three dimensions) and a reduction fac-
tor (i.e. the valence parameter). After defining the TaskGraph, the

DataFlowController is initialized by adding the TaskGraph, reg-
istering the callbacks and providing the initial inputs. In most cases

the initial inputs simply inform the leaf nodes which part of the do-
main they are suppose to operate. Finally, the DataFlowController
will be responsible for the execution of the TaskGraph on the avail-
able resources.

Listing 1: TaskGraph implementation for a k-way reduction
dataflow. For simplicity we assume there are k% many leafs

// Constructor to set the valence and number of leafs
ReductionPlusOne :: ReductionPlusOne (int leafs ,
d = log(leafs ,valence);

k = valence;
// Assuming k"d leafs
total = (std::pow(k,(d+1))

int valence)

-1) / (k-1)

// Add task types (i.e., callback ids)
callback_ids.push_back (LEAF_CB);
callback_ids.push_back (REDUCE_CB);
callback_ids.push_back (ROOT_CB);

}

// Get callbacks Ids
vector <int> ReductionPlusOne ::
return callback_ids;

}

callbacks () {

// Create a logical task from an id
Task ReductionPlusOne :: task (int task_id) {
Task t;
t.id = task_id;
// Assign the input for a leaf
if (task_id >= (total — k*d))
t.type = callback_ids [0];
else { // Assign inputs for other tasks
incoming.resize (k);
for (int i=0; i < k; i++)
t.incoming[i] = task_id+k+i+1;

}

// Assign the output for the root task

if (task_id == 0)
t.type = callback_ids[2];

else { // Assign the output for the other tasks
t.type = callback_ids[1];
t.outgoing.resize (1);
t.outgoing [0]. resize (1);
t.outgoing [0][0] = (task_id —1)/k;

return t;

3.3 Dynamic Runtime System

The Charm++ runtime is used as backend for the dynamic execu-
tion of the tasks. In our implementation, we represent the tasks

{
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as chares [Kale and Krishnan 1993]: migratable-objects that repre-
sent the basic unit of parallel computation in Charm++. The tasks
in the task graph are mapped to a collection of chares called a chare
array. The runtime can launch a large number of chares simulta-
neously and can periodically balance the load by migrating chares
when necessary. The implementation creates a single chare array
that holds all tasks needed throughout the execution of the task
graph and based on the task id, each chare is able to determine the
callback to use (i.e. using the function task(id)).

The communication between chares are done using remote pro-
cedure calls. This means that the chares containing the input data
can asynchronously start the dataflow by simply sending the data
to the corresponding chare of the dataflow. Similarly, for each out-
going Payload each task simply adds an input to the corresponding
downstream task identified through the task id. As defined at the
end of Listing 2, the controller launches the execution of the leaf
tasks (i.e. run function) that will asynchronously trigger execution
of the other tasks in the graph.

Listing 2: Example of volume rendering and compositing
dataflow.

int volume_render(vector <Payload>& in,
vector <Payload>& out, TaskId id);
vector <Payload>& in,

vector <Payload>& out, TaskId id);
vector <Payload>& in ,
vector <Payload >& out,

int composite (

int write_image (
TaskId id);

// Reduction tree + additional wrap—up task
ReductionPlusOne graph(block_decomp, valence);

// Initialize the library runtime controller
DataFlowController c;
c.initialize (graph);

// Register the callbacks

vector <CallbackId > avail_cid = graph.callbacks ();
// Leaf task will volume render the local data
c.registerCallback (avail_cid[0], volume_render);
// Internal nodes will composite the image
c.registerCallback (avail_cid[1], composite);

// The wrap—up task will write the image
c.registerCallback (avail_cid[2], write_image);

// Set initial inputs and start execution
map<Taskld ,Payload> initial_inputs;
c.run(initial_inputs);

In order to assist users in the implementation of their algorithms,
the library also provides prototypical implementations of common
task graphs, such as, reductions and broadcasts for users to use or
modify.

4 USE CASE: NEUROSCIENCE

Usability and performance of our system is demonstrated through
common neuroscience tasks such as filtering, registration and visu-
alization of large scale NHP microscopy data. We have acquired 2P
images of axons labeled with GFP (through intracortical injections
of AAV9-GFP) and blood vessels labeled with Alexa594-conjugated
tomato lectin through transparent Clarity-treated blocks (~60 mm3)
of macaque V1. Typically, an injection site of 1mm diameter in V2
produces a 7x4mm field of GFP-labeled axon terminals in V1 at
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Figure 3: Interactive median filtering on a volume of size
1024x1024x1024.
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Figure 4: Scaling performance for median-filter, parallel vol-
ume rendering and image compositing using a k-way reduc-
tion dataflow with a dataset of size 2048x2048x2575 voxels.

several cortical depths, totaling a volume of about 60 mm?. Imag-
ing even a small fraction of this volume, i.e. 5 mm® at 0.5 ym z-
resolution, takes several hours of continuous acquisition, gener-
ating approximately a terabyte of data. All the experiments pre-
sented in this section were performed using a leadership class su-
percomputer, Shaheen II, a Cray XC40 system with 6,174 dual socket
compute nodes based on 16 core Intel Haswell processors with
Aries Dragonfly connectivity to capture the parallel.

4.1 Filtering

Often, algorithms can be characterized by data-parallel stencil op-
erations, that is, operations that can be completed independently
for each voxel given a small neighborhood. Common filtering algo-
rithms that fit this model are minimum, maximum, average, blur,
sharpen, edge detection, and deconvolution. Designing the right
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Figure 5: Decomposition of the overlapping sub-volumes
used to register two adjacent volumes.

set of filters to use, their sequence, and parameters, is usually achieved

through by trial-and-error in an interactive exploratory setting.
Our software infrastructure enables a user to interactively test dif-
ferent filters available in the ViSUS framework or custom devel-
oped through the python interface with results instantaneously
available for visualization in the ViSUS viewer. Fig. 3) illustrates
the median-filter in action on a dataset containing a billion voxels.

Within our framework, defining a dataflow that contains a me-
dian filter in combination with a k-way reduction dataflow (i.e. a
variant of the listed code in Listing 1 and 2) to execute volume
rendering and reduction image composition at scale is extremely
simple. The processing library automatically decomposes the in-
put domain among the available tasks (i.e. depending on the num-
ber of cores and nodes requested) where each task reads only the
sub-volume of interest for the computation. Note that due to the
particular data layout, making queries with spatial locality in IDX
is more efficient compared to others (e.g. row major order layout).

The rendering task uses the VTK [Schroeder et al. 2006] volume
rendering (i.e. SmartVolumeRendering) to render a sub-volume of
the data and the composition of the images done via a simple front-
to-back ordering. Results in Fig. 4 show good scaling of the dataflow
applied to a microscopy dataset of size 2048x2048x2575 voxels to
produce a rendered image of size 2048x2048.

4.2 Registration

Image volumes of cleared brain tissue are created as a stack of 2D
images taken at regular intervals (e.g. every 0.5 micron) on the z-
axis. A single volume is acquired through the depth of the tissue at
a given X,Y coordinate within the larger region of interest contain-
ing labeled cells. The scan then moves to the next XY coordinate
(maintaining a 15% overlap with adjacent volumes to aid alignment
in later steps) until the entire region of interest has been imaged.
As the microscope finishes scanning one field of view and moves
on to the next position, a range of movements causes the data to
often be mis-aligned. To create a single 3D dataset encompassing

Peer-Timo Bremer®

Figure 6: Slab of NHP neuronal data before and after align-
ment

the entire region of interest, each individual X,Y volume needs to
be aligned using the overlapping fluorescent blood vessels between
adjacent volumes (see Fig. 5).

To compute pairwise relative positions between adjacent vol-
umes, we use 3D Normalized Cross Correlation (NCC) as a similar-
ity metric. The alignment process is done in three steps:

(i) Decompose the volume into slabs along the Z-direction
(ii) For each corresponding slab of the two adjacent volumes, load
the data in the overlapping region and compute pairwise rel-
ative position using 3D NCC
(iif) Choose the most reliable displacement corresponding to the
largest NCC peak value and smallest NCC shape width of the
peak

In order to scale to large volumes, contrary to sliding window based
spatial correlation, we transform the data from spatial to frequency
domain using the open source FFTW library [Frigo 1999] and com-
pute the correlation in the frequency domain. This results in good
speed up which is further exploited in the parallel setup. Finally,
for an unbiased NCC, we use summed area tables to compute the
local mean square energy required to normalize the correlation co-
efficient. Fig. 6 shows a slab before and after the alignment pro-
cess. Seemingly, this strategy to align volumes makes it an ideal
candidate for parallelization. We describe the parallel dataflow im-
plementation next and provide details for optimal global position-
ing based on minimum spanning tree of the undirected weighted
graph as a simple post processing step.

To perform the registration of multiple 3D volumes in parallel,
we define a dedicated dataflow that uses 2D neighbour communi-
cation pattern (see Fig. 9) where individual alignment for a pair of
slabs is evaluated first. The results are then collected in an another
task where the alignment that report the best correlation values
will be used to compute the final global positions. To compute the
optimal global positions, we find the minimum spanning tree of an
undirected weighted graph where the nodes correspond to the vol-
umes and the edges represent the pairwise relative positions with
the best correlation value chosen during the previous step. We use
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Figure 7: Scaling performance of registering 25 3D mi-
croscopy volumes, each of size 1024x1024x1024 voxels.

the inverse of the correlation co-efficient (i.e. higher correlation
co-efficient corresponds to lower weight of the edge in the graph)
as the weights for the spanning tree computation. This way the re-
sulting spanning tree will maximize the correlation factor among
all the pairs in the graph. Fig. 8 shows the alignment results for
a configuration of 4 volumes. In this particular example, the mini-
mum spanning tree is given by the edges 0-2-3 that correspond to
largest correlation factor. Finally the optimal global positions are
used by the framework to update the position of each volume in
the viewer.

Due to the high memory requirements of the correlation task,
we restricted the number of cores per node to only 4 out of the
32 available cores. Figure 7 shows the results for up to 3200 nodes
where the parallel execution exhibits strong scaling. It is important
to notice that for the given domain decomposition, even at 3200
nodes, each registration task will correlate only 2 slices per slab.
This means that at this scale the problem is over-decomposed and
the workload of the registration algorithm becomes very small vis-
a-vis the communication and runtime overhead which has a higher
impact on the overall performance.

5 CONCLUSIONS

Massive amounts of scientific data are an increasing challenge for
scientists and engineers. With rapidly growing data sizes, gener-
ation, distribution, analysis and visualization of the data requires
specialized software infrastructures that (1) enables interactive vi-
sualization and exploration, (2) enables designing complex work-
flows in an interactive setting, and (3) scales the computation of
those workflows to full-scale data efficiently utilizing HPC resources.
Current solutions do not offer straight forward support for the defi-
nition and prototyping of visualization and analysis workflow that
can be executed interactively or at scale. Furthermore, the user
who intend to develop an algorithm for execution at scale is forced
to deal with the complexity of parallel programming (i.e. communi-
cation, scheduling, resource management, portability, etc.) on HPC
systems. Here, we present the first end-to-end software framework
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Figure 8: Undirected weighted graph of initial displacement
for 4 1024x1024x1024 volumes. The nodes correspond to the
volumes and the edges report the highest correlation factor
and the displacement for each pair (in pixels).

that simplifies interactive visualization and analysis of tera-scale
datasets.

To enable interactive exploration of the data, the framework
takes advantage of the multi-resolution IDX data format and the
ViSUS streaming infrastructure. In this environment, we introduce
anew library that creates an abstraction layer while separating the
definition of the algorithm from actual implementation and execu-
tion. This library further allows the user to define visualization and
analysis workflows as task graphs that can be executed on local re-
sources for interactive analysis or at scale on HPC systems.

Our new approach enables developers to implement their algo-
rithms without the knowledge of underlying communication prim-
itives and resource allocation on different architectures or at differ-
ent scales. Furthermore, this component provides flexibility to eas-
ily implement an algorithm, test it interactively on local resources
using the data streaming infrastructure (i.e. ViSUS) or at scale on
HPC resources using the full-scale resolution of the data.

We demonstrated how our infrastructure scales and simplifies
three algorithms applied to large-scale neuroscience problems: ren-
dering, de-noise filtering and 3D image registration showing strong
scaling on the leadership class supercomputer, Shaheen II. The sim-
plicity of use, choice of operating either locally or remotely on
HPC systems, fast multi-resolution streaming infrastructure, par-
allel custom analytics and a simple python interface for rapid pro-
totyping and analysis makes our infrastructure an ideal choice for
research labs and engineering firms with massive data aiding in
improving the user productivity and supporting scientists to find
new insights and breakthroughs in their data.
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Figure 9: Registration dataflow: for each input volume a set of tasks reads one or more z-slabs in the overlapping region. These
slabs (i.e., potentially filtered to remove noise) are then sent to the correlation tasks to perform the registration. The results
of the registration are collected by another set of tasks (i.e., sort/evaluate) that will evaluate the final global position for each

volume.
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