
BabelFlow: An Embedded Domain Specific Language
for Parallel Analysis and Visualization

Steve Petruzza
University of Utah

spetruzza@sci.utah.edu

Sean Treichler
Stanford University
sjt@cs.stanford.edu

Valerio Pascucci
University of Utah

pascucci@sci.utah.edu

Peer-Timo Bremer
Lawrence Livermore National Lab

bremer5@llnl.gov

Abstract—The rapid growth in simulation data requires
large-scale parallel implementations of scientific analysis and
visualization algorithms, both to produce results within an
acceptable timeframe and to enable in situ deployment.
However, efficient and scalable implementations, especially of
more complex analysis approaches, require not only advanced
algorithms, but also an in-depth knowledge of the underlying
runtime. Furthermore, different machine configurations and
different applications may favor different runtimes, i.e., MPI vs
Charm++ vs Legion, etc., and different hardware architectures.
This diversity makes developing and maintaining a broadly
applicable analysis software infrastructure challenging.

We address some of these problems by explicitly separating
the implementation of individual tasks of an algorithm from
the dataflow connecting these tasks. In particular, we present
an embedded domain specific language (EDSL) to describe
algorithms using a new task graph abstraction. This task graph
is then executed on top of one of several available runtimes
(MPI, Charm++, Legion) using a thin layer of library calls. We
demonstrate the flexibility and performance of this approach
using three different large scale analysis and visualization
use cases, i.e., topological analysis, rendering and compositing
dataflow, and image registration of large microscopy scans.
Despite the unavoidable overheads of a generic solution, our
approach demonstrates performance portability at scale, and,
in some cases, outperforms hand-optimized implementations.

Keywords-Embedded DSL; User productivity; In-situ analy-
sis; Simulation runtime systems; Programming models

I. INTRODUCTION

Two of the prevailing trends in large-scale scientific
computing are the move toward in situ analysis, to avoid
the growing I/O bottleneck, and the adoption of new sim-
ulation runtimes, such as Legion or Charm++, to manage
the increasing parallelism. Unfortunately, when combined,
these trends create a significant challenge for developers of
analysis packages. The ideal analysis library should be com-
patible with any relevant application, while simultaneously
being highly optimized in order to minimize the impact on
the main simulation. Furthermore, developing efficient and
scalable algorithms for comparatively unstructured problems
such as feature detection, clustering or streamline com-
putation is challenging. While there exist solutions, these
are typically specialized implementations, hand tuned for
particular software stacks, architectures and host applica-
tions [1], [2], [3], [4], [5], [6], [7]. Although it is possible to

interoperate between runtimes [8] this significantly increases
the complexity of integrating an analysis routine with the
main application, adds build complexity and dependencies
on additional software stacks, and typically carries a per-
formance penalty. In practice, the burden is placed on the
developer of the analysis package to provide native ports
or interfaces customized to the chosen runtime of the host
application. However, this requires library developers to be
proficient in a wide range of runtimes and maintain an ever-
growing suite of specialized implementations, which is too
time consuming to be practical.

In order to improve user productivity and avoid main-
taining multiple implementations for different runtimes, we
propose a new task-based abstraction that explicitly sepa-
rates the description and implementation of an algorithm
from the underlying runtime. More specifically, we present:
1) an Embedded Domain Specific Language (EDSL) that
describes an algorithm as a task graph; and (2), a thin
layer of library calls to execute the task graph with different
runtime backends. Together, these two components create
BabelFlow, a unifying framework that allows developers
to maintain a single implementation of an algorithm that
nevertheless provides a native interface and efficient im-
plementation for a number of different software stacks.
To demonstrate the flexibility of our approach, we present
results from three disparate use cases: topological feature
detection; rendering and image compositing; and image
registration of large microscopy scans.

Beyond the immediate benefit of an easy-to-integrate
and easy to maintain analysis library, the framework offers
a number of additional advantages. First, the description
provides an inherent separation of concerns in which the
algorithm developer is not exposed to any communication,
synchronization or other runtime-related concepts. This al-
lows the communication and algorithm to be developed
and tested separately, and the different backends provide
an ideal environment for regression testing. Second, the
design naturally allows over-decomposition, which is not
only useful for runtimes that provide load balancing but
also simplifies debugging at scale. Any backend can execute
task graphs of arbitrary size, on a single node or even
serially, while guaranteeing a correct order of execution.

Finally, since the framework guarantees the same tasks are
executed, independent of the runtime, it provides an ideal
test bed to compare and contrast how different runtimes
execute various workloads. Combined, BabelFlow represents
a domain specific software layer between analysis algorithms
and different simulation runtimes that provides both portable
performance and high user productivity.

Our contributions in details are:
• An EDSL that uses a simple C++ API to express large

scale parallel algorithms;
• Three different backends to execute task graphs in the

native MPI, Charm++ or Legion runtime; and
• Detailed scaling studies for three distinct algorithms

implemented using the proposed EDSL and executed
on three different runtimes.

II. RELATED WORK

As discussed above, data analysis and visualization is
increasingly dependent on parallel implementations both to
deal with the growing data sizes as well as to adapt to the
needs of in situ deployment. This has given rise to a number
of libraries and frameworks to simplify and accelerate the
development of analysis algorithms. Some projects like
ADIOS [9], Glean [10] or Dataspaces [11] focus on the
data movement aspect within parallel applications, between
computational resources and to the I/O subsystem. Other
techniques, like DIY [12], focus more directly on providing
reusable implementation of common analysis patterns, i.e.,
reductions, binary swaps, etc. There also exist in situ focused
APIs to both the VisIt [13], [14] and the Paraview [15], [16]
frameworks. However, these efforts are generally focused on
simplifying the development of algorithms within a given
software stack. For example, expressing an algorithm in DIY
will provide an efficient MPI implementation, and working
within ADIOS, Glean or Dataspaces will provide an easy
integration with simulations already using these frameworks.
Finally other approaches, like ParSEC [17], enable porta-
bility over heterogenous architectures using a task based
algorithm representation but still do not help integrating
with large scale simulations where the runtime system has
been already chosen. We focus, instead, on the orthogonal
issue: how to quickly and transparently port algorithms to
different software stacks in order to easily integrate with
different applications. In fact, just as BabelFlow provides
backends for MPI, Legion and Charm++ currently, it could
target higher level frameworks such as ADIOS or Glean in
the future. Similarly, the system can exploit new data models
such as Conduit [18] to transparently access simulation data
and further uncouple the implementation of an algorithm
from the specific application that uses it.

Conceptually, our approach is more similar to toolkits,
such as VTK-m [19] and its various predecessors [20], [21],
[22], which aim to express algorithms for various processor

Opera�ng	System

MPI
Controller

Charm++
Controller

Legion
Controller

Task	Graph

Applica�on
Task	1 Task	2 Task	n

Sy
st
em

So
�w

ar
eBa

be
lF
lo
w

Figure 1: BabelFlow architecture: The application imple-
ments a set of tasks and expresses its dataflow using the
EDSL in the form of a task graph. A BabelFlow controller,
implemented natively in one of several runtimes, then exe-
cutes the task graph.

architectures, i.e., GPUs vs. many core. However, VTK-
m is focused primarily on fine-grain, on-node parallelism
with backends to CUDA [23] or OpenMP [24]. Instead,
our approach targets more coarse-grain parallelism and
distributed parallel runtimes. In this aspect our dataflow
matches common serial analysis pipelines, most notably
VTK [25], which have long used connected sets of so-called
filters to express a dataflow.

III. DATAFLOW EDSL
The core of our approach is an EDSL to describe parallel

algorithms via task graphs and execute them via a set of run-
time controllers. The task graph describes a given algorithm
as a set of idempotent tasks and the dataflow connecting
them (see Figure 1). The runtime controller is responsible
for the parallel execution of the workflow using a chosen
runtime system. Both the task graph and the controllers use a
simple C++ API that defines base classes to be implemented
and extended. In particular, the user is required to perform
three basic steps: first, implement all tasks used during
the algorithm; second, provide deserialization/serialization
routines for the objects that are exchanged between tasks;
and third, extend the TaskGraph class to describe the
dataflow. The first two are generic and required in some form
for any implementation. The third represents a procedural
description of the task graph and can be as simple as a
modulo operation for a reduction, as shown in Listing 2
and 3. We also provide prototypical implementations of
common task graphs, such as reductions and broadcasts
for users to use or modify. Finally, the implementations
of the tasks are connected to the task graph by registering
the corresponding callbacks, and the graph is passed to a
controller for execution.

For example, a visualization workflow to perform a vol-
ume rendering followed by an image compositing is shown
in Listing 1.

Listing 1: Example of volume rendering and compositing
reduction dataflow.
i n t vo lume rende r (v e c t o r<Payload>& in ,

v e c t o r<Payload>& out , TaskId i d) ;
i n t c o m p o s i t e (v e c t o r<Payload>& in ,

v e c t o r<Payload>& out , TaskId i d) ;
i n t w r i t e i m a g e (v e c t o r<Payload>& i n ,

v e c t o r<Payload>& out , TaskId i d) ;

/ / R e d u c t i o n t r e e + a d d i t i o n a l wrap�up t a s k
R e d u c t i o n graph (block decomp , v a l e n c e) ;

/ / D e f i n e a TaskMap
ModuloMap task map (n procs , g raph . s i z e ()) ;

/ / Choose t h e c o n t r o l l e r
DataFlow : : Runtime Name : : C o n t r o l l e r c ;
c . i n i t i a l i z e (graph , &task map) ;

/ / R e g i s t e r t h e c a l l b a c k s
v e c t o r<C a l l b a c k I d> a v a i l c i d = graph . c a l l b a c k s () ;
/ / Lea f t a s k w i l l volume r e n d e r t h e l o c a l d a ta
c . r e g i s t e r C a l l b a c k (a v a i l c i d [0] , v o lu me ren d e r) ;
/ / I n t e r n a l nodes w i l l c o m p o s i t e t h e image
c . r e g i s t e r C a l l b a c k (a v a i l c i d [1] , c o m p o s i t e) ;
/ / The wrap�up t a s k w i l l w r i t e t h e image
c . r e g i s t e r C a l l b a c k (a v a i l c i d [2] , w r i t e i m a g e) ;

/ / S e t i n i t i a l i n p u t s and s t a r t e x e c u t i o n
map<TaskId , Payload> i n i t i a l i n p u t s ;
/ / P o p u l a t e i n i t i a l i n p u t s
c . run (i n i t i a l i n p u t s) ;

In this example, we want to perform a distributed volume
rendering using block-decomposed data. The algorithm has
three stages that translate into three different tasks: volume
rendering of a local block, compositing multiple images
and writing the resulting image. Here we use a simple
reduction tree with one additional task at its root. The
task graph requires two parameters: the number of blocks
used and the reduction factor the user desires. In this case,
the Reduction task graph provides three different task
types: one for the leaf nodes, one for the internal nodes
of the reduction and one for the additional root task. A
simple ModuloMap (defined in Listing 3) is used to allocate
the tasks in round robin over the available resources. As
discussed below, only the MPI and some variants of the
Legion controller require this explicit load balancing. To link
the task graph to the implementation, one simply assigns
the different callbacks to the task types. Each task imple-
mentation uses a generic signature based on the concept
of Payloads, which is either a pointer to an in-memory
object or a binary buffer. Next, a chosen runtime controller
is instantiated and initialized with the graph. Finally, the user
hands off the input data by assigning Payloads to leaf tasks
and starts the execution.

The Listing 1 example shows a post-process type com-
putation in which the entire graph is started by a single
controller instance. In practice, the in-situ coupling to a host
application would be handled according to each runtime’s
execution model (see Section V) . For example, in MPI the
graph is split across the ranks, and each rank instantiates
only its assigned subgraph. Similarly, the subgraph requires
only data local to the specific rank. Then, each MPI rank
instantiates a controller that executes the local graph. In this
respect, Legion uses a similar model based on the concept of
a shard, while in Charm++ the task graph is entirely defined

by the main chare (and scalably instantiated by the runtime),
but the data assignment is handled by the standard remote
procedure calls.

One central advantage of our approach is its flexibility
in quickly and easily reassembling different algorithms. For
example, changing the callbacks in the listing above, one
can also compute global statistics or execute any number of
reduction-based algorithms. Similarly, the target runtime can
be exchanged, or the height and valence of the reduction can
be modified easily. At the core of the EDSL lies the task
graph defined as a set of logical tasks, each of which stores:
a globally unique task id, task ids of tasks that will provide
inputs and receive outputs and a task type identifying which
callback to use. Special task ids are reserved for external
inputs, e.g., data from a simulation or disk. To simplify the
Ids generation, different portions of the graph, such as the
embedded reduction or the various broadcast patterns, can
be assigned unique prefixes and then can use the traditional
modulo type operations to assign postfix Ids. In practice,
task graphs may contain millions of nodes. Therefore, fully
instantiating a graph on every core or node of a simulation
is not scalable. Instead, we typically rely on procedural
descriptions, which allow any part of the framework to query
the global task graph. A query typically instantiates a set of
logical tasks restricted to small local subgraphs, for example
the subset of tasks that will be running on a certain rank (i.e.,
MPI). Ultimately, the runtime controllers convert logical
tasks into physical tasks with space allocated for inputs and
outputs and schedule them for execution according to their
internal taskmodel. We currently provide a set of common
dataflow graphs for reductions, broadcasts, binary swaps,
neighbor and k-way merge dataflows. The user can utilize
any of the provided graphs or derive new extensions as
needed.

The basic TaskGraph interface requires the user to imple-
ment only two functions: 1) compute the total number of
tasks, and 2) return a logical task corresponding to a task
id. In addition, the MPI and some version of the Legion
controller use the concept of a task map that, given an
MPI rank or a shard, provides a list of tasks assigned to
it. Listing 2 provides a C++ style description of a reduction
task graph implementing all functions needed for all three
runtimes. For simplicity, we assume a k-way reduction with
kd many tasks.

Listing 2: All functionality needed for a k-way reduction
across all three runtimes. For simplicity we assume there
are kd many leafs
R e d u c t i o n : : R e d u c t i o n (i n t l e a f s , i n t v a l e n c e) {

/ / S e t t h e v a l e n c e
k = v a l e n c e ;
/ / Assuming k ˆ d l e a f s
d = l o g (l e a f s , v a l e n c e) ;
n t a s k s = (pow (k , (d +1))�1) / (k�1)

/ / Add s u p p o r t e d t a s k t y p e s (i . e . , c a l l b a c k i d s)
c a l l b a c k i d s . push back (LEAF CB) ;

c a l l b a c k i d s . push back (REDUCE CB) ;
c a l l b a c k i d s . push back (ROOT CB) ;

}

/ / Get c a l l b a c k s I d s
v e c t o r<i n t> R e d u c t i o n : : c a l l b a c k s ()
{ re turn c a l l b a c k i d s ; }

/ / Cr ea t e a l o g i c a l t a s k from an i d
Task R e d u c t i o n : : t a s k (i n t t a s k i d) {

Task t ;
t . i d = t a s k i d ;

/ / A s s i g n t h e i n p u t f o r a l e a f
i f (t a s k i d >= (n t a s k s � pow (k , d)))

t . c a l l b a c k i d = LEAF CB ;
e l s e { / / A s s i g n i n p u t s f o r o t h e r t a s k s

incoming . r e s i z e (k) ;
f o r (i n t i =0 ; i < k ; i ++)

t . incoming [i] = t a s k i d⇤k+ i +1;
}

/ / A s s i g n t h e o u t p u t f o r t h e r o o t t a s k
i f (t a s k i d == 0)

t . c a l l b a c k i d = ROOT CB;
e l s e {
/ / A s s i g n t h e o u t p u t f o r t h e o t h e r t a s k s

t . c a l l b a c k i d = REDUCE CB;
t . o u t g o i n g . r e s i z e (1) ;
t . o u t g o i n g [0] . r e s i z e (1) ;
t . o u t g o i n g [0] [0] = (t a s k i d �1)/ k ;

}
re turn t ;

}

/ / Re tu rn a l l t a s k s f o r a g i v e n shard
v e c t o r<Task> R e d u c t i o n : : l o c a l G r a p h (

TaskMap map , i n t s h a r d i d) {
v e c t o r<Task> graph ;

/ / Get a l i s t o f a l l t a s k i d s f o r t h i s group
v e c t o r<i n t> i d s = map . g e t I d s (s h a r d i d) ;

f o r (auto i d : i d s)
g raph . push back (t a s k (i d)) ;

re turn graph ;
}

/ / Re tu rn t h e number o f t a s k s i n t h e graph
i n t R e d u c t i o n : : s i z e (){ re turn n t a s k s ; }

Listing 3: TaskMap example that maps the tasks using a
simple modulo operation

ModuloMap : : ModuloMap (i n t s h a r d c o u n t , i n t t a s k c o u n t) :
TaskMap () , mShardCount (s h a r d c o u n t) ,
mTaskCount (t a s k c o u n t){}

/ / Re tu rn t h e shard i d f o r t h e g i v e n t a s k i d
i n t ModuloMap : : s h a r d (i n t t a s k i d) c o n s t
{ re turn (t a s k i d % mShardCount) ; }

/ / Re tu rn t h e l i s t o f t a s k i d s f o r t h e g i v e n shard i d
v e c t o r<i n t> ModuloMap : : g e t I d s (i n t s h a r d i d) c o n s t{

v e c t o r<i n t> back ;
i n t t = s h a r d i d ;

whi le (t < mTaskCount) {
back . push back (t) ;
t += mShardCount ;

}
re turn back ;

}

The definition of localGraph and callbacks, which
is generic, is provided in the base class, as are the default

versions of the task maps (e.g., ModuloMap). This leaves
the user to initialize the graph according to the desired size
and to define the function (i.e., localGraph) to compute the
logical tasks assigned to a specific shard or rank using the
given task map. In practice, the only unfamiliar aspect of
implementing an algorithm using BabelFlow is the definition
of the task graph. It requires the user to explicitly define task
ids for all tasks and express the necessary communication
in terms of these task ids. However, the corresponding
index space does not have to be contiguous, which makes
it straight forward to define prefixes for different phases
of the algorithm and use some intuitive numbering within
each phase. For example, the graph of the merge tree
computation shown in Figure 5 can be separated into rounds
on all leafs (local computation, correction, segmentation), a
reduction (all joins) and several broadcasts (relay) patterns,
each of which has a simple default ordering. Furthermore,
we provide the ability to draw the abstract task graph (or
subsets of it) in Dot [26], a graph layout tool that makes
debugging simple and intuitive.

IV. RUNTIME CONTROLLERS

Once a (local) task graph has been instantiated and its
tasks populated with callbacks, it is used by different runtime
controllers to generate a set of physical tasks and ultimately
instantiate these tasks according to the execution model,
of the specific runtime. Since the controllers are natively
implemented in the chosen runtime model they seamlessly
integrate with a host application using the same runtime.
However, each runtime system has a different data and
execution model. In particular, each runtime has different
ways to:

• evaluate dependencies and schedule tasks;
• manage data and communication; and
• distribute the computation over the available resources.
The task graph representation, as created by the EDSL,

explicitly provides all data dependencies, which in turn
determine a (partial) order of execution. The graph does
not determine the task mapping, i.e., which particular pro-
cessors a task should be executed in, or what the optimal
scheduling policy might be. Instead, each runtime controller
is responsible for translating the high-level EDSL model into
its internal representation as well as possible. All runtime
controllers share the same interface by deriving from the
same base class to make switching between controllers easy.
Below we discuss the implementation of three different run-
time controllers for MPI, Charm++ and Legion, respectively.
Therefore, the implementations represent an initial effort
and especially for the less common runtimes (Charm++
and Legion) could likely be optimized further. However, we
are closely collaborating with the relevant experts regarding
some of the unexpected results of the scaling studies in
Sec. V.

A. MPI Controller
The MPI controller uses a static allocation of the tasks and

asynchronous point-to-point messages for communication.
To determine the task allocation, it uses a task map to
determine which tasks are assigned to which MPI rank.
Note that not all MPI ranks must be assigned tasks nor is
there a limit on how many tasks each rank can be assigned.
In particular, distributing tasks among fewer ranks provides
a direct trade-off between distributed and shared memory
parallelism. Furthermore, executing a task graph on fewer
(or even a single) ranks has proven useful for debugging a
given dataflow.

Each MPI rank instantiates a separate controller in its
main thread which will be responsible for scheduling tasks
and handling the communication for all its assigned tasks.
As discussed before, the user is required to provide a task
map that assigns a list of task ids to each rank (e.g., as
getIds in List. 3). Consequently, each rank creates only
the portion of the tasks assigned to it. The controller posts
the necessary receives and waits for incoming messages or
for a direct input of external data. Since each rank handles
only the corresponding local tasks, all data needed to start
a dataflow is available locally. Each time new information
arrives, the controller checks whether all input requirements
for some tasks are met. When a task is ready to execute,
it spawns a new thread that is executed in the background.
Once the computation has finished, the output Payloads are
placed in an outgoing messages buffer for the controller to
send. To avoid unnecessary de-/serialization and copying of
data, the controller checks explicitly for inter-rank messages
for which it skips the serialization and instead transfers
the memory directly by passing a pointer. However, each
task assumes ownership of its input data and relinquishes
ownership of its output data to the MPI thread. This avoids
any race conditions on the data but may require additional
copies of the data to be made. The in-memory messages
are particularly useful for persistent data, as the task graph
assumes idempotent tasks with no persistent state. Currently,
the MPI controller uses the standard C++ thread API to
manage a thread pool. Tasks are scheduled greedily, i.e., each
task is started as soon as all its input data has been received,
in the order in which this data arrived. To better mesh with
the host applications use of threads, other interfaces such as
OpenMP could be used.

B. Charm++ Controller
The Charm++ runtime controller implements the tasks

as chares [27]: migratable-objects that represent the basic
unit of parallel computation. The tasks in the task graph are
mapped to a collection of chares called a chare array. The
runtime is able to launch a large number of chares simul-
taneously and periodically balances the load by migrating
chares when necessary. Therefore, no explicit task map is
needed and the Charm++ load balancer can be tuned to run

manually, periodically or in sync for all the tasks using the
runtime APIs. The experiments presented in the next section
use periodic load balance.

The current implementation creates a single chare array
from the main chare that holds all tasks needed throughout
the execution of the task graph. Unlike the MPI and Legion
implementation, Charm++ does not explicitly instantiate
any local or global task graph. Instead, the chare id is
translated into a task id at the execution time of a chare,
which determines the callback used, and the communication
between chares uses remote procedure calls. For instance,
the dataflow execution is started asynchronously by chares
containing the input data. Once a task has received all
the required inputs, the corresponding callback function is
executed and the outputs sent to the other tasks identified
through the task ids.

In the future, having multiple chare arrays for the different
task types may lead to better performance, but since this
would require additional Charm++ specific extensions to
the task graph, we opted to use a generic implementation.
Similar to the MPI controller’s notion of in-memory mes-
sages, the Charm++ serialization functionality will avoid
unnecessary de-/serializations when possible.

C. Legion Controller

Legion is a data-centric programming system that de-
scribes the dependency relationships of a program using so-
called logical regions [28] that contain the meta-information
describing a piece of data but not necessarily the data itself.
A region associated with a physical copy of its data is re-
ferred to as a physical region. The Legion controller uses the
given de-/serialization routines to map Payloads to physical
regions and vice versa. Each task in Legion has a number
of region requirements, that represent the inputs/outputs data
of the task. In particular, data can be passed to the dataflow
by simply specifying the corresponding region requirements,
and the runtime will provide the data once it is available.
Tasks in Legion are spawned using a launcher object. There
are three kinds of launchers:

• single task launcher, which starts a single task;
• index task launcher, which starts a set of tasks that

share the same set of region requirements;
• must parallelism launcher, which handles a set of single

task launchers.
Index task launchers and must parallelism launchers are

two different concepts used to simultaneously spawn a large
number of tasks. Furthermore, each task can spawn subtasks
recursively. Note that in Legion the costs for preparing and
scheduling tasks is borne by its parent task and roughly
proportional to the number of subtasks used. As a result,
controlling the granularity of the task graph is crucial to
maintain an acceptable ratio of useful work to runtime
overhead.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 128 256 512 1024 2048

T
im

e
(s

ec
)

Number of cores

Legion IL
Legion SPMD

Figure 2: Legion index launches (IL) and SPMD implemen-
tations performance comparison executing a parallel merge
tree dataflow with an HCCI dataset of size 512x512x512.

Slaughter et al. [29] suggest that in order to scale an
application with a high number of data-parallel tasks, an
SPMD (i.e., Single Program Multiple Data) approach is
preferable. In order to develop a Legion SPMD runtime
controller, we need to separate the computation in a series of
independent shards. Conceptually, shards are similar to the
task map the MPI controller uses to distribute tasks among
MPI ranks (i.e., as in the MPI case, the Legion controller
makes use of the task map). More specifically, we start
one task per shard using a must parallelism launcher to
execute a set of independent tasks running in parallel without
any runtime synchronization. This significantly reduces the
runtime overhead for large task graphs. The per-shard task
(i.e., scheduled by the top level task) will then schedule its
assigned part of the task graph using single task launchers.

To manage dependencies between shards, Legion provides
synchronization primitives called phase barriers. Those are a
lightweight producer-consumer synchronization mechanism
that allow a set of producer operations to notify a set of
consumer operations when data is ready. Note that this
semantic is quite different from MPI barriers since there
is no global synchronization involved and producers and
consumers can be dynamically defined.

As mentioned above, Legion provides a second construct
to spawn a large number of tasks: an index launch. To
compare both versions, we have developed a second Legion
controller using index launchers instead of the SPMD type
distribution of tasks. This approach relies more heavily
on Legion’s ability to distribute and manage large number
of tasks (i.e., neither phase barriers nor task maps are
required). However, Index launches require the task graph
to be organized in a set of rounds of similar tasks, all of
which can then be processed using a single index launch.
The current implementation crawls the graph to group the
tasks into rounds of noninterfering tasks, i.e., those that do
not have dependencies between tasks of the same round.
For each round, an index task launcher will be executed,
mapping the necessary outputs of the previous launch with
the inputs of the next.

We performed a series of strong scaling experiments
to assess the scalability of both launchers producing an

977 10
-6

4 10
-3

16 10
-3

62 10
-3

250 10
-3

1 10
0

4 10
0

16 10
0

 128 256 512 1024 2048

T
im

e
(s

ec
)

Number of tasks/cores

Compute time w/ Must epoch launcher
Compute time w/ Index luncher

Task Staging
Task computation

Figure 3: Strong scaling benchmark of Legion index and
must epoch launchers. As N tasks are launched on N cores
the time per task decreases and the time staging inputs
and outputs remains constant at a low level. However, due
to runtime overhead in spawning tasks, the overall time
increases.

increasing numbers of tasks. Fig. 3 shows execution times
for a single launch of a set of data-parallel tasks. The
different curves show the compute time for all tasks, the
time used to stage task, i.e. prepare input and output regions,
set up region requirements, etc., and the total time for the
two different implementations. The task computation itself
scales almost perfectly for this workload. The staging costs,
which represent all operations BabelFlow needs to connect
the dataflow to Legion, remains roughly constant, yet the
total times shows a significant increase. This is due to the
overhead incurred by Legion when spawning a large number
of tasks, which in the current version is high compared to
the total runtime of our tasks.

Further experiments using a full analysis code have shown
that, so far, the index launch approach appears to suffer
more (compared to the SPMD) from runtime overheads and
demonstrates less scalability. We report some performance
results for topological analysis comparing both Legion im-
plementations in Fig. 2. For all remaining experiments
discussed in the next section, we used the Legion SPMD
implementation. While the index launcher approach at the
moment appears less scalable than the SPMD style exe-
cution, this may change with future releases of Legion as
the runtime evolves. One advantage of our framework is
that it is easy to maintain multiple controllers for a given
runtime that can be deployed transparently by the algo-
rithm developers. In particular, as the EDSL matures, one
might expect certain types of algorithms to prefer particular
versions of a controller (i.e., SPMD vs. index launch) or
different architectures be more effective than others.

V. USE CASES

The sections above demonstrated the simplicity and flex-
ibility of our approach in both defining task graphs and
using them with different runtimes. Here we show that the
resulting framework is not only easy to use and portable but
can also take advantage of the performance and scalability
of the underlying runtimes. To this end, we discuss three

Figure 4: Features extracted from the HCCI dataset using
the parallel merge tree algorithm. These features, in the
simulation, represent ignition regions.

disparate use cases of large-scale analysis and visualization
algorithm: a topological feature extraction with a complex
task graph; two versions of a distributed rendering pipeline
using a reduction and a binary swap, respectively; and
a data-intensive registration of large-scale images. In all
cases, we show scaling results for all three runtimes and
where possible compare them with existing state-of-the-art
implementations. All experiments have been performed on
Shaheen II, a Cray XC40 system with 6,174 dual socket
compute nodes based on 16 cores Intel Haswell processors
with Aries Dragonfly connectivity.

A. Topological Analysis

The first case study is a parallel implementation of seg-
mented merge trees [6] applied to large-scale combustion
simulations. As shown in Fig. 5, the task graph of the
algorithm is a combination of a global reduction tree and
a set of broadcast-like patterns with substantial computation
in the reduction as well as at the leaves of the broadcast.
The computation is composed of four types of tasks: local
computation, join, correction and segmentation. For details
and definitions about the algorithm, we refer to the original
work by Landge et al. [6]. The local computation at the leaf
nodes of the reduction takes a data block generated by the
simulation as input and produces two outputs: a local tree
and a boundary tree. These are sent to the correction and
join tasks, respectively. All but the leaf tasks of the reduction
perform the join of two (or more) boundary trees and send
the other boundary tree to the next join and an augmented
boundary tree to as many correction stages as there are
leaves in the subtree of the join. To avoid sending too many
messages from a single join task, the dataflow implements
its own overlay tree to perform the broadcast (i.e., relay tasks
in Fig. 5). The correction uses the augmented boundary tree
and the local tree to update the local tree and sends it to the
next correction stage. Once all joins have been passed to a
correction, each local tree is passed to a final segmentation
task. Fig. 5 shows a binary version of this task graph with
four leaves. In practice, we typically use 8-way reductions
(i.e., k = 8) to reduce the height of the tree.

For testing, we use the output of a large-scale simulation
of the autoignition in a Homogeneous-Charge Compression
Ignition (HCCI) engine of size 1024 ! 1024 ! 1024 grid

Figure 5: Distributed merge tree dataflow with four input
blocks (K=2). The local computation at the leaf nodes of
the reduction takes a data block and produces two outputs:
a local tree and a boundary tree. These are sent to the
correction and join tasks, respectively. Finally, the correction
tasks pass a local tree to a final segmentation tasks.

points. The original size of the dataset is 512 ! 512 ! 512
grid points. In order to perform large-scale experiments at
high cores count, we replicate the initial dataset to a larger
domain of 1024 ! 1024 ! 1024 grid points. Since the data
is periodic and features are distributed roughly uniformly
through the simulation domain (see Fig. 4), the inflated data
represents a good proxy for a much larger simulation run.
The dataset has been generated with the KAUST Adaptive
Reacting Flow Solvers (KARFS) [30] simulator on Shaheen
II. Fig. 4 depicts the features extracted by this analysis.

We compare our results to a Lange et al. hand-tuned
MPI implementation [6][31], made available to use by
the original authors. Fig. 6 shows that the same algorithm
executed on Charm++ and MPI runtimes has good scalability
and performance. In particular, our generic implementation
using the MPI backend outperforms the original imple-
mentation, especially at low core counts. The most likely
explanation is that the original implementation used blocking
communication while our MPI backend uses asynchronous
calls and independent threads. Since the computation is
naturally load imbalanced (caused by the strong data-
dependency of the algorithm), an asynchronous execution
is likely more tolerant of delays. This comparison with the
original topology implementation is not primarily aimed at
comparing run-time overheads but rather at demonstrating
that, despite unavoidable overheads, a generic solution can
be, sometimes, even faster than typical hand-coded solutions.
It is reasonable to consider that a hand-coded version of
the algorithm using asynchronous communication, threads,
etc. would likely be at least as fast as the generic task.
However, developing this code would require significant
expertise in MPI whereas our system requires no knowledge
of MPI (or any other runtime system). The Legion runtime
is comparably fast at low core counts but does not exhibit
good scaling. As discussed in Sec. IV-C, the challenge is

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 128 256 512 1024 2048 4096 8192 16384 32768

T
im

e
(s

ec
)

Number of cores

Original MPI
MPI

Charm++
Legion

Figure 6: Computation time for the parallel merge tree
dataflow using the different runtimes for a HCCI dataset.
Original MPI is the reference implementation [6].

that at larger core counts many tasks are doing minimal
work (or even no work at all), yet the Legion runtime still
incurs nontrivial overhead for these tasks.

B. Distributed Rendering

The second use case considers a common two-stage
visualization pipeline consisting of a rendering and a com-
positing stage. We used the same HCCI dataset as input since
it represents a challenging test case with complex geometry
interspersed with near-empty regions. In the second stage,
the local rendering results are composited to either a final
image or a set of image tiles, depending on the compositing
algorithm used. The first stage is embarrassingly parallel
and is implemented using VTK volume rendering (i.e.,
SmartVolumeMapper with raycasting). Performance scaling
results for this stage, equal for all the runtimes, are reported
in Fig. 10a. For the compositing stage, we have implemented
the two different standard algorithms: reduction and binary
swap [32].

As a comparison, we use IceT [33] a high-performance,
sort-last parallel rendering library. Note that, to provide a
fair comparison with our compositing task, we disabled
the interlacing and the background filtering in IceT. These
optimization are used to reduce the image sizes that are
exchanged and are not available in our implementation. As
a result, all tasks will exchange dense images or dense
image patches. Using the reduction dataflow, the image
compositing follows a simple binary reduction tree where at
every stage the input images’s z-buffers are reordered and
produce the composited image. At the end of the dataflow, a
single image is produced (see Fig. 10d). The execution times
shown in Fig. 10e report reasonably good scaling for all the
runtimes, with MPI showing the lowest increase. Note that,
unlike all other results in this section, these results are weak
rather than strong scaling, as the number of images to be
composited increases with the number of cores.

One of the challenges for the binary reduction is that, by
definition, the number of tasks decreases as the algorithm
progresses, which severely limits the available parallelism.

Figure 7: Rendering and binary swap compositing dataflow.
The leaves perform the rendering of an input block. The
rendered image is split and sent to a pair of composite tasks
following the binary swap dataflow. The final tasks perform
the final composition and write each tile on the disk.

The traditional solution is the so-called binary swap, where
at each stage the tasks pair up and exchange a portion of
their current picture. At the end of the dataflow, a number of
tasks (i.e., equal to the number of input images to compose)
will each own one tile of the final image (see Fig. 7).
We see performance increases using MPI and Charm++
runtimes (see Fig. 10f) but a decrease for Legion. One
possible explanation is that the number of tasks increases
significantly, yet the workload of each task decreases. This
may result again in a relatively larger overhead. More in
general, the task granularity being too small can cause a
large runtime overhead compared to the runtime of the
tasks. In particular, the deserialization/serialization of the
data structures and the thread management can be avoided in
a custom implementation, like IceT, that shows much better
timing in the reduction case. However, note that the total
execution time for the full dataflow is dominated by the
(strongly scaled) rendering tasks, and thus the total time for
all runtimes is practically equivalent (see Fig. 10b,10c).

C. Brain Data Registration
The third use case originates in neuroscience and uses

BabelFlow to create a dataflow for aligning 3D volumes
(see Fig. 8). Each volume of the input data is a stack of
2D images from a laser scan acquisitions of a nonhuman
primate brain. Here, we register 25 volumes distributed on a
5x5 grid, each volume containing 10243 grid points. The
input volumes have an overlapping area of 15%, which
is used for evaluating the correct alignment (i.e., offset)
of adjacent volumes. The registration algorithm is based
on a 3D domain decomposition in slabs over the Z axis
and a set of X ! Y blocks (i.e., one for each volume).
The registration uses a 2D neighbor dataflow (see Fig. 8),
where each slab exchanges the overlapping sub-volumes
data and evaluates the alignment. As this is the first parallel
implementation of this particular algorithm, there exists no
reference implementation and we report the timing for the
three runtimes as is.

Figure 8: Neighbors registration dataflow for four volumes.
For each Z slab, a set of tasks read the blocks that overlaps
with the neighbors. These are sent to the correlation tasks to
perform the registration. The results are collected by another
set of tasks (i.e. sort/evaluate), that will evaluate the final
position in space of each volume.

 0

 50

 100

 150

 200

 250

 256 512 1024 2048

T
im

e
(s

ec
)

Number of nodes

MPI
Charm++

Legion

Figure 9: Computation time of brain data registration.

Due to the large data volumes involved, the correlation
task is memory limited and we use only 4 of the 32 available
cores per node to schedule tasks. Fig. 9 shows the results for
up to 3200 nodes. Charm++ and MPI exhibit good scaling
with MPI performing better at low and Charm++ better at
higher node counts. Legion is on par and even slightly faster
for low node counts but levels out as the number of task
increases and the workload decreases.

VI. CONCLUSIONS

Implementing efficient and scalable analysis and visu-
alization algorithms is challenging and typically relies on
solutions specialized for specific software stacks and archi-
tectures. As the HPC ecosystem is becoming more diverse,
both in terms of runtimes and architectures, hand-tuning
solutions in this manner will require substantial integration
efforts. Here, we present a framework to address this chal-
lenge by combining an EDSL to easily define large-scale
algorithms with different runtime controllers to execute al-
gorithms based on different software stacks. We demonstrate
that this approach significantly simplifies formulating large-
scale parallel algorithms and leads to flexible, portable and
scalable implementations in different use cases.

Beyond providing a new approach to design parallel
analysis algorithms, our system also represents a flexible
test bed to experiment with different strategies to use various

runtimes. The MPI and Charm++ controllers both perform
well with similar characteristics at scale. The Legion con-
troller works well for low core counts but in its current
version does not scale as well as desired. The scalability
issues encountered are due to bottlenecks in the Legion
runtime that the developers are actively working to address.
Note that every runtime system has its quirks and that the
goal of our EDSL is not to achieve equivalent performance
on all runtimes, but to allow analysis code to be integrated
into the runtime system being used by an application, even
if it is not a perfect match for the algorithms being used by
the analysis code.

Going forward, we believe that the EDSL-driven ap-
proach will provide a simple means to develop scalable
implementations that are easier to integrate with different
host applications. Furthermore, the different task graphs will
provide interesting test cases for runtime developers and will
allow us to better understand what execution models are
most appropriate for analysis and visualization algorithms.

ACKNOWLEDGMENT

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344.
This work is also supported in part by NSF: CGV:
Award:1314896, NSF:IIP Award: 1602127 NSF:ACI:award
1649923, DOE/SciDAC DESC0007446, CCMSC DE-
NA0002375, and PIPER: ER26142 DE-SC0010498 and
by the Department of Energy under the guidance of Dr.
Lucy Nowell and Richard Carson. This research used the
resources of the Supercomputing Laboratory at KAUST,
Saudi Arabia.

REFERENCES

[1] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers,
and M. Petersen, “An image-based approach to extreme
scale in situ visualization and analysis,” in Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’14.
Piscataway, NJ, USA: IEEE Press, 2014, pp. 424–434.
[Online]. Available: http://dx.doi.org/10.1109/SC.2014.40

[2] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K. L. Ma,
“In situ visualization for large-scale combustion simulations,”
IEEE Computer Graphics and Applications, vol. 30, no. 3, pp.
45–57, May 2010.

[3] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Mar-
ion, B. Gevecik, M. Rasquin, and K. E. Jansen, “The paraview
coprocessing library: A scalable, general purpose in situ vi-
sualization library,” in Large Data Analysis and Visualization
(LDAV), 2011 IEEE Symposium on, Oct 2011, pp. 89–96.

[4] M. Dreher and B. Raffin, “A flexible framework for asyn-
chronous in situ and in transit analytics for scientific simula-
tions,” in Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on, May 2014, pp.
277–286.

 0

 20

 40

 60

 80

 100

 120

 128 256 512 1024 2048 4096 8192

T
im

e
(s

ec
)

Number of cores

VTK volume rendering

(a) Volume rendering

 0

 20

 40

 60

 80

 100

 120

 128 256 512 1024 2048 4096 8192 16384 32768

T
im

e
(s

ec
)

Number of cores

IceT
MPI

Charm++
Legion

(b) Rendering and reduction compositing

 0

 20

 40

 60

 80

 100

 120

 128 256 512 1024 2048 4096 8192 16384 32768

T
im

e
(s

ec
)

Number of cores

IceT
MPI

Charm++
Legion

(c) Rendering and binary swap compositing

(d) Composited image of the HCCI dataset
volume rendering

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 128 256 512 1024 2048 4096 8192 16384 32768

T
im

e
(s

ec
)

Number of cores

IceT
MPI

Charm++
Legion

(e) Reduction compositing

 0

 0.5

 1

 1.5

 2

 2.5

 128 256 512 1024 2048 4096 8192 16384 32768

T
im

e
(s

ec
)

Number of cores

IceT
MPI

Charm++
Legion

(f) Binary swap compositing

Figure 10: (a) Volume rendering (i.e., VTK) time for the HCCI dataset. In (b) and (c) we report the execution time for the
full dataflow (i.e., volume rendering and compositing), respectively, for a reduction (b) and a binary swap (c) compositing
dataflow for an image of size 2048 ! 2048. Although the runtimes seem to behave similarly, they are actually different for
the compositing stage (e, f).

[5] J. C. Bennett, H. Abbasi, P. T. Bremer, R. Grout, A. Gyulassy,
T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay,
D. Thompson, H. Yu, F. Zhang, and J. Chen, “Combining in-
situ and in-transit processing to enable extreme-scale scien-
tific analysis,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference
for, Nov 2012, pp. 1–9.

[6] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett,
H. Kolla, J. Chen, and P.-T. Bremer, “In-situ feature
extraction of large scale combustion simulations using
segmented merge trees,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’14. Piscataway, NJ, USA:
IEEE Press, 2014, pp. 1020–1031. [Online]. Available:
http://dx.doi.org/10.1109/SC.2014.88

[7] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in
situ coupling of simulation with a fully featured visualization
system,” in Proceedings of the 11th Eurographics Conference
on Parallel Graphics and Visualization, ser. EGPGV
’11. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2011, pp. 101–109. [Online]. Available:
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109

[8] N. Jain, A. Bhatele, J.-S. Yeom, M. F. Adams, F. Miniati,

C. Mei, and L. V. Kale, “Charm++ and mpi: Combining the
best of both worlds,” in Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International. IEEE, 2015,
pp. 655–664.

[9] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki,
J. Y. Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield,
M. Parashar, N. Samatova, K. Schwan, A. Shoshani,
M. Wolf, K. Wu, and W. Yu, “Hello adios: the challenges
and lessons of developing leadership class i/o frameworks,”
Concurrency and Computation: Practice and Experience,
vol. 26, no. 7, pp. 1453–1473, 2014. [Online]. Available:
http://dx.doi.org/10.1002/cpe.3125

[10] V. Vishwanath, M. Hereld, V. Morozov, and M. E.
Papka, “Topology-aware data movement and staging
for i/o acceleration on blue gene/p supercomputing
systems,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’11. New York, NY, USA:
ACM, 2011, pp. 19:1–19:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063409

[11] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu,
S. Klasky, N. Podhorszki, and H. Abbasi, “Using cross-
layer adaptations for dynamic data management in large

scale coupled scientific workflows,” in Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: ACM, 2013, pp. 74:1–74:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503301

[12] T. Peterka, R. Ross, W. Kendall, A. Gyulassy, V. Pascucci,
H.-W. Shen, T.-Y. Lee, and A. Chaudhuri, “Scalable parallel
building blocks for custom data analysis,” in Proceedings of
Large Data Analysis and Visualization Symposium LDAV’11,
Providence, RI, 2011.

[13] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern,
D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. Weber,
H. Krishnan, T. Fogal, A. Sanderson, C. Garth, W. Bethel,
D. Camp, O. Rübel, M. Durant, J. Favre, and P. Navrátil,
“VisIt: An End-User Tool For Visualizing and Analyzing Very
Large Data,” in High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, Oct 2012, pp. 357–372.

[14] T. Kuhlen, R. Pajarola, and K. Zhou, “Parallel in situ coupling
of simulation with a fully featured visualization system,”
2011.

[15] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion,
B. Gevecik, M. Rasquin, and K. Jansen, “The paraview
coprocessing library: A scalable, general purpose in situ
visualization library,” in Proc. of IEEE Symposium on Large
Data Analysis and Visualization (LDAV), 2011, pp. 89 –96.

[16] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland,
N. Fabian, and J. Mauldin, “Paraview catalyst: Enabling
in situ data analysis and visualization,” in Proceedings of
the First Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, ser. ISAV2015.
New York, NY, USA: ACM, 2015, pp. 25–29. [Online].
Available: http://doi.acm.org/10.1145/2828612.2828624

[17] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault,
and J. J. Dongarra, “Parsec: Exploiting heterogeneity to
enhance scalability,” Computing in Science & Engineering,
vol. 15, no. 6, pp. 36–45, 2013.

[18] LLNL. (2014) Conduit. [Online]. Available:
https://software.llnl.gov/conduit/

[19] K. Moreland, C. Sewell, W. Usher, L. t. Lo, J. Meredith,
D. Pugmire, J. Kress, H. Schroots, K. L. Ma, H. Childs,
M. Larsen, C. M. Chen, R. Maynard, and B. Geveci, “Vtk-m:
Accelerating the visualization toolkit for massively threaded
architectures,” IEEE Computer Graphics and Applications,
vol. 36, no. 3, pp. 48–58, May 2016.

[20] L.-t. Lo, C. Sewell, and J. P. Ahrens, “Piston: A portable
cross-platform framework for data-parallel visualization op-
erators.” in Proc. Eurographics Symp. Parallel Graphics and
Visualization, 2012, pp. 11–20.

[21] J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros,
“EAVL: The Extreme-scale Analysis and Visualization Li-
brary,” in Eurographics Symposium on Parallel Graphics and
Visualization, H. Childs, T. Kuhlen, and F. Marton, Eds. The
Eurographics Association, 2012.

[22] K. Moreland, U. Ayachit, B. Geveci, and K. L. Ma, “Dax
toolkit: A proposed framework for data analysis and visual-
ization at extreme scale,” in 2011 IEEE Symposium on Large
Data Analysis and Visualization, Oct 2011, pp. 97–104.

[23] J. Nickolls, I. Buck, M. Garland, and K. Skadron,
“Scalable parallel programming with cuda,” Queue, vol. 6,
no. 2, pp. 40–53, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1365490.1365500

[24] L. Dagum and R. Menon, “Openmp: An industry-standard
api for shared-memory programming,” IEEE Comput. Sci.
Eng., vol. 5, no. 1, pp. 46–55, Jan. 1998. [Online]. Available:
http://dx.doi.org/10.1109/99.660313

[25] W. Schroeder, K. Martin, and B. Lorensen, The Visualization
Toolkit An Object-Oriented Approach To 3D Graphics, 4th
Edition. Kitware, Inc., 2004.

[26] E. Koutsofios and S. North, “Drawing graphs with dot,”
AT&T Bell Laboratories, Murray Hill, NJ, Tech. Rep.
910904-59113-08TM, 1991.

[27] L. V. Kale and S. Krishnan, “Charm++: A portable
concurrent object oriented system based on c++,” SIGPLAN
Not., vol. 28, no. 10, pp. 91–108, Oct. 1993. [Online].
Available: http://doi.acm.org/10.1145/167962.165874

[28] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing locality and independence with logical regions,”
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’12. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2012, pp. 66:1–66:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389086

[29] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken,
“Regent: A high-productivity programming language for hpc
with logical regions,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’15. New York, NY,
USA: ACM, 2015, pp. 81:1–81:12. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807629

[30] B. J. Lee, X. Xiao, F. E. Hernandez Perez, H. G. Im,
and R. Sankaran, “KARFS: A combustion DNS solver for
hybrid computing architectures,” 2012, poster presented at
36th International Symposium on Combustion, Seoul, South
Korea, 2016.

[31] I. Rodero, M. Parashar, A. G. Landge, S. Kumar, V. Pascucci,
and P.-T. Bremer, “Evaluation of in-situ analysis strategies
at scale for power efficiency and scalability,” in Cluster,
Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM
International Symposium on. IEEE, 2016, pp. 156–164.

[32] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh,
“Parallel volume rendering using binary-swap compositing,”
IEEE Computer Graphics and Applications, vol. 14, no. 4,
pp. 59–68, 1994.

[33] K. Moreland, W. Kendall, T. Peterka, and J. Huang, “An
image compositing solution at scale,” in Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 25:1–25:10. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063417

